NASA/TM-2002-211632

Fly-By-Light/Power-By-Wire Fault-Tolerant
Fiber-Optic Backplane

Mahyar R. Malekpour
Langley Research Center, Hampton, Virginia

|
April 2002

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
Program Office plays a key part in helping NASA
maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for NASA’s
scientific and technical information. The NASA STI
Program Office provides access to the NASA STI
Database, the largest collection of aeronautical and
space science STI in the world. The Program Office
is also NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are

published by NASA in the NASA STI Report
Series, which includes the following report

types:

+ TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing reference
value. NASA counterpart of peer-reviewed formal
professional papers, but having less stringent
limitations on manuscript length and extent of
graphic presentations.

« TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

*« CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

* CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings sponsored or
co-sponsored by NASA.

» SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services that complement the

STI Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing

research results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

* Access the NASA STI Program Home
Page at http://www.sti.nasa.gov

* Email your question via the Internet to
help@sti.nasa.gov

* Fax your question to the NASA STI
Help Desk at (301) 621-0134

* Telephone the NASA STI Help Desk at
(301) 621-0390

* Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320

NASA/TM-2002-211632

Fly-By-Light/Power-By-Wire Fault-Tolerant
Fiber-Optic Backplane

Mahyar R. Malekpour
Langley Research Center, Hampton, Virginia

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

|
April 2002

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an

official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and
Space Administration.

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171

(301) 621-0390 (703) 605-6000

Abstract

The design and development of a fault-tolerant fiber-optic backplane
to demonstrate feasibility of such architecture is presented. The
simulation results of test cases on the backplane in the advent of induced
faults are presented, and the fault recovery capability of the architecture
is demonstrated. The architecture was designed, developed, and
implemented using the Very High Speed Integrated Circuits (VHSIC)
Hardware Description Language (VHDL). The architecture was
synthesized and implemented in hardware using Field Programmable
Gate Arrays (FPGA) on multiple prototype boards.

11

Acknowledgments

I would like to acknowledge my gratitude to Dr. Jerry H. Tucker of NASA Langley Research
Center for his guidance during the development process. I would like to acknowledge my appreciation to
Dr. Celeste M. Belcastro of NASA Langley Research Center for her recommendations. I would also like
to acknowledge my appreciation to Dr. Paul S. Miner of NASA Langley Research Center for his helpful
comments in earlier version of this report. Lastly, I would like to acknowledge my appreciation to
Wilfredo Torres-Pomales of NASA Langley Research Center for his review and helpful comments of the
final version of this report.

iv

Table of Contents

ACKNOWIEAZIMENLSeiiiiiiiiiiiiiiieeee ettt e e e e e ettt e e e e e e st te et eeeeeeenaaeneeeeas v
TADIE Of CONEENES......uueiiiiiieieiiiiie et e ettt e e e e e e ettt e e e e e e e sanabbtbeeeeeeeeeennnaseeeeas v
LIST OF FIGUIES ...ttt e e e e ettt e e e e e e st taeeeeeeeeenaanbeeeeas vi
YN e (0 1) 11 PP PPPUPPPPRRSPPPP vii
Lo INEFOAUCTION ..ttt e e e e e ettt e e e e e e sttt eeeeeeeesaaaabbnaeeeeeeeas 1
2. Design and DevVEIOPMENLccciiiiiiiiiiiiiiieeee ittt e e e e s e e e e e e e siibraeeeeeeeeas 3
2.1 BIURMU .ottt ettt et e et e et e e st e e sabeeesabee e e 4
2.2 PaCKet FOTMALSeiiiiiiieiiiiitee ettt e e e ettt e e e e e e e st aaeeeeeeeeennees 6
2.3 PerfOIMANCE ...cooueiiiiiiieee ettt e e e ettt e e e e e ettt e e eeeeseasanbbbaeeeeeeeennnnes 8
2.4 ReEPOTHING EITOTS......uiiiiiiiiiiiiiiiiteeeee ettt e e e e e e ettt e e e e e e s s aebbtaeeeeeeeeas 10
2.5 HOUSEKEEPING ...ttt e ettt e e e e e e ettt e e e e e s s nabbbaeeeeeeeeas 10
2.6 INPUE DALA ..ooiiiiiiiiiiiieieeee et e e e e ettt e e e e e s et aeeeeeeas 11
2.7 OULPUL DALA ...ttt e e ettt e e e e e e ettt e e e e e e s e baaaeeeeeeas 13
2.8 SYSEIM TIMETS. ..eeuiiiiiiiiiteee ettt e et e e e e e ettt e e e e e e e sttt e e eeeeeessanabbaeeeeeeeaens 13
2.9 FIFO ...ttt ettt et e st e e s e sbeeeeas 14
2.10 EPROM....coiiiiiiiiieeete ettt ettt ettt e ettt et e st e e s e sneeeea 14
2.11 Schedule FOrmMaL........ccoiiiiiiiiiiiiiiiieie ettt e e e e e et eeeeeeeas 15
2.12 Schedule CONrOLIETcoiiiiiiiiiiiieee e et e e e e et eeeeeeas 16
2.13 BIU TESDENCKHeiiiiiiieeeee e e et e e e e e s et eeeeeeeas 17
2.14 RMU TESIDENCKeeiiiiiiiiiiiiiiieeee et e e e e e et eeeeeeas 17
2.15 MICTOProceSSOT (PC) ..ciiiiiiiiiiiiieee ettt e e e e et e e e e e e 18
2.16 Fault INJECHIONueeiiiiiieee ettt e et e e e e e e ettt e e e e e e s s saiabtaeeeeeeeeas 19
2.17 FaUlt RECOVETY ...eiiiiiiiiieiieeee ettt e e e e e ettt e e e e e e s e eaabtaeeeeeeeeas 20
2.18 Reporting FaUlLsccooiiiiiiiiiiiiiiieeie et e e e e et eee e e 20
3. Hardware DevVelOPMENL.uiiiiiiiiiiiiiiiiieie ettt e et e e e e e e e e 21
B PAL ettt ettt ettt ettt ettt et e e s e e saeeeea 21
3.2 Address ASSIZNIMENT.cceiiiiiiiiiiiiiiteteee ittt e e e e e ettt eeeeeessaabbeteeeeeeeesssannaaeneeeeeeesns 22
3.3 XC3020 and Microprocessor INtErfacecccueeeirriiiiiiniiiiiiiiiiieeeeeeee e 22
3.4 Programming XC4005A and Testing FIFOScccoooiiiiimiiiiiiieeeceeeec e 22
4. Simulation Results and TeSt CaSesccuuuuvriiiiiiiiiiiiiiiiieeee e ettt e e et ee e e e e e s 23
O I (6 1| W T TP PP UPPPPPPPPP 23
4.2 Failing @ BIUcoooiiiiiiiiieeeee ettt e e e e e e eeeeeeas 26
S SUIMIMATY ¢ttt e ettt e e e e e ettt e et e e e e e e s astbb et e e eeeeeeeanabbbbteeeeeeesannnssnenees 29
5.1 Future ENhanCemeEntscoouuuiiiiiiiiiiiiiiiiiicceee ettt e e e e et eee e e 29
RETETEIICES ...eeiiiiiiiiiieeee ettt e e e e ettt e e e e e e sttt eeeeeeessannasneeeas 30
APPEIAIX A ettt e e e e e ettt e e e e e e ettt aeeeeeeeeanannreaes 31
APPENAIX Bt e e e e e et e e e e e e e aabreeees 91
FN 0J31S) 116 1 PSP PPPUPPPP PSPPI 98
APPENAIX D oot e et e e e e e e ettt et e e e e e e e e e 102
APPENAIX Bt e e e e e e ettt e e e e e e e aaaes 103

List of Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.

Fiber-Optic Channel...........ocuuiiiiiiiiiiii e e 1
Fiber-Optic backplane.uiiiiiiiiiiiiiiiiiiee e 2
Global clock, fiber-optic channel...............cooiiiiiiiiiiiiiiii e 4
BIU/RMU functional deSCIIPLIONS.vveteeeeeiiiiiiiiiiieeeeeeeeaiiiiitieeeeeeesessiiieeeeeeeeeeeennanns 5
Packet fOrmAts.uviiiiiiiiii e e 7
Channel read bus bandwidth efficiency as a function of packet size.cccccceeeennnee. 9
Status_Reg_0, error bit aSSINMENTS.cevriiuiiiiiiiiieeeeiiiiiieeeee e e eeriiiieeeeeeee e e e 10
POWET ON/TESEL OPETALIONS.evveieiiieeiiiiiiiiiteee e e e ettt e e e e e e ettt e e e e e e e s ssiibbeeeeeeeeens 11
Incoming-packet CONLIOLIET.........cciiiiiiiiiiiiiiiiie e 12
Outgoing-packet CONLIOILET.eeiiiiiiiiiiiiiiiieee e e e e e 13
Schedule format for EPROM/RAM.ccciiiiiiiiiiiiiieee et 15
BIU teStDENCH. ...ccoiiiiiiiiiie e e 17
RMU teStDENCR. .ceiiiiiiiiiic e e 18
MiCTOPIOCESSOT OPETALIONS. ...uetvvvreeeeeeeeeiiiiiiteeeeeeeasiiitreeeeeeessssanbbrreeeeesssannnrraeeeeeesns 19
Typical scheduled aCtIVILIES.ueeiiieiiiiiiiiiiiieiee e e e e 23
Ideal CONAILIONS. ..ccooueiiiiiiiiiiiee et e e e 24
Ideal conditions, BIUs and RMU are in perfect synchrony.cccccevvviiinineennnn. 25
Start-Cycle command, BIU clocks are re-synchronized with the RMU clock........... 26
BIU 1 is powered down for One CYCIES.ccoeiiiiiiiiiiiiiiieiiiieiiiiiieeee e 27
BIU 1 is powered down (detail).........cooouuuiiiiieiiiiiiiiiiiiiieeeeeeeiiieeeee e 28
BIU 1 recovers, Start-Cycle command.............oooviiiiiiiiiiieiiniiiiiiieeeee e 28

vi

Acronyms
ASIC

BIU

RMU
MUX
VHSIC
VHDL
FPGA
EPROM
RAM
FIFO
FBL/PBW
PLL
DPLL

Mbps

The use of brand names is for completeness and does not imply endorsement by US government.

Application Specific Integrated Circuit
Bus Interface Unit

Redundancy Management Unit
Multiplexer

Very High Speed Integrated Circuit
VHSIC Hardware Description Language
Field Programmable Gate Array
Electrically Programmable Read Only Memory
Random Access Memory

First In First Out
Fly-By-Light/Power-By-Wire

Phase Locked Loop (Analog)

Digital Phase Locked Loop

Mega bits per second

vii

1. Introduction

The purpose of this project is to develop an architecture capable of implementing the fault-
tolerant, fiber-optic backplane proposed by Palumbo in [1]. The development of this architecture is also
intended to assist with the investigations of behavior of the backplane in the presence of faults. The fiber-
optic backplane consists of a set of Bus Interface Units (BIU) and Redundancy Management Units
(RMU) forming multi-channel redundant fiber-optic backplane. Each channel, in turn, consists of a set of
BIUs that are tied to a RMU via separate fiber-optic read and write buses (the action of read and write are
taken from the perspective of the BIUs). Figure 1 is a depiction of the fiber-optic channel. Fault-
tolerance is achieved by replicating several channels and combining the BIU outputs of the channels in
the RMUs to mask any errors or failures before the data is placed on the read buses. In such redundant
system, the RMUs of different channels communicate with each other through separate fiber-optic
backplane write buses. Figure 2 is a depiction of the fiber-optic backplane. The RMUs also provide
global time synchronization across the backplane and timing control through the channel read buses. All
processing and bus accesses are controlled by time, i.e., all data appearing on the backplane can be
uniquely identified by the time at which they become available. The BIUs of the channels are time
division multiplexed onto the channel write bus. The RMU is the only device that writes to the channel
read bus. Because the RMU is fundamental to the backplane's operation, both the channel read bus lines
and the RMU may be replicated to increase reliability. Finally, the RMU can be integrated with a
gateway to a network thus providing fault-tolerant access to remote processing nodes|1].

read bus
I/0 i+n /0 i+1 I/0 i
A 4 A 4 A RMUJ
BIU i+n BIU i+1 BIU i
write bus

Figure 1. Fiber-Optic channel.

i
BlUn | eee BIU 1 RMU1 ™
T

BIUn (X X BIU 1 RMU 2

{

-

BIU n (XN BIU 1 RMU k

#

Figure 2. Fiber-Optic backplane.

Analysis of the backplane indicates that development of a single channel is sufficient for a
feasibility study of the proposed backplane. Thus, the architecture developed, as shown in Figure 1, has
been demonstrated with only one channel. In order to incorporate fault-tolerance into the system,
additions required to accommodate multiple channels would have to be made to the RMU. The particular
implementation of the architecture that is presented here enables a RMU to connect to as many as 29
BIUs; however, for testing purposes a maximum of four BIUs are sufficient to demonstrate full channel
functionality.

The architecture is designed, developed, and implemented using the Very High Speed Integrated
Circuits (VHSIC) Hardware Description Language (VHDL) [2]. Time constraints did not allow for a full
hardware implementation; however, large portions of the developed architecture were synthesized and
implemented in hardware using Xilinx Field Programmable Gate Arrays (FPGA) [3] on multiple
prototype boards. These FPGA boards can be installed in Personal Computers (PC) such that the PCs act
as the front-end to the FPGA boards for both programming the FPGAs and for controlling the operation
and data transfer to the FPGA boards during their normal operations. Instead of designing one board to
function as a RMU and designing a different board to function as a BIU, it was decided to take advantage
of the flexibility provided by FPGAs to develop a single design so that a board could be programmed to
function as either a RMU or a BIU.

This report presents the development and test cases of a single fiber-optic channel. In Section 2
the implementation issues, the design, and the development of the architecture are discussed. The
hardware design and development of the architecture are presented in Section 3. Test cases and
simulation results are presented in Section 4. Section 5 concludes this report with a summary of the work

accomplished and a discussion of future enhancements.

Five appendices supplement this report. Appendix A includes the VHDL code for the
components of this architecture. Appendix B contains the C code. Appendix C describes the pin
assignment and layout. Appendix D consists of sample schedules and data packets, and lastly, Appendix
E describes the procedures for using all VHDL tools in the development process.

2. Design and Development

As stated in [1] “to support high speed data transmission, the optical receiver is clocked by a
phase locked loop (PLL) which has locked its internal clock to the incoming data stream. Normally,
switching between multiple data streams would represent a problem as this would require the PLL to re-
lock. In this invention, the multiple transmitters in the BIUs, Figure 1, are themselves clocked by PLLs
which are in turn locked to the data stream produced by the RMU transmitters. The multiple transmitters
thus have the same clock source reducing skew and drift and minimizing lock time for the RMU PLL.”

The proposed backplane requires fast PLLs with very low lock time. Specifically, the proposed
design requires a PLL with a lock time of a few clock ticks while existing PLLs and DPLLs have a typical
lock time of hundreds of ticks. Our investigations at the initial phase of the development process on
existing PLLs and DPLLs revealed that existing commercial products did not meet the stringent
requirements of the proposed design. The design of a new PLL or DPLL requires more study and is
beyond the scope of this work. As a result, a new alternative is developed to 1) Meet the stringent timing
requirements, 2) Allow continuation of the design and development of the architecture, and 3) Maintain
interoperability with the backplane in the advent of new development in PLL technology, and 4) Keep the
added cost to a minimum.

This alternative incorporates the use of a Global Clock over a separate fiber-optic cable, Figure 3.
The Global Clock resides in the RMU and is broadcast to all BIUs in the channel. In this alternative, the
BIUs are assumed to be at equal distances from the RMU of the channel. In other words, the read and
write buses are of equal lengths. Therefore, all BIUs are guaranteed to be in perfect synchronization with
the RMU and, as a result, the switch-time between the channels is at its absolute minimum of one clock
tick. In addition, in the advent of new and fast PLL technology, the PLL output would simply replace the
Global Clock input to the BIUs. The additional cost of this alternative is, therefore, associated with a
transmitter, a fiber-optic cable, and receivers that are dedicated to the broadcast of the Global Clock.

Clock
Data

Read-Bus

BIU (4) BIU (3) BIU (2) BIU (1) RMU

Write-Buses
Data

Data
Data MUX

v Yy

Data

\ 4

Figure 3. Global clock, fiber-optic channel.

2.1 BIU/RMU

Analysis of the behavior of the RMU and BIU revealed that these modules have so much in
common that the BIU should be treated as a special case of the RMU, Figure 4. In particular, the main
functions of the BIU and RMU are transmission of data, reception of data, and execution of the scheduled
instructions. Of course, RMU interpretation of the scheduled operations is slightly different from the
BIU. The only RMU-specific function is voting on the input data and masking out the faulty BIU(s).
However, this function may be performed by an independent module that complements the BIU module’s
functionality. As a result, both BIU and RMU can be designed to have identical interfaces to the outside
world. Therefore, the terms BIU and RMU are used interchangeably in the implementation sense.
However, every instance of this module requires its own unique identifier. This identifier is set externally
via the BIU_ID parameter. Also, by accommodating for their differences in interpreting the scheduled
operations via an external bit (BIU_OR_RMU), the BIU/RMU architecture can be developed as a single
module. Joint development of the BIU/RMU has the added advantages of requiring less development
time and code maintenance. Also, it reduces the overall ASIC fabrication cost by 50% since one single
die suffices. Therefore, for the remainder of this report, unless specifically stated, all details and
descriptions of this module apply to both BIU and RMU. The VHDL entity declaration and architectural
description of the BIU/RMU are listed in Appendix A.

BIU/RMU

Process Input Data Process Scheduled Operations

Receive Input Data Select Proper Channel

Vote on Input Data

Store Input Data Process Record Status

Process Housekeeping Process Output Data

Legend:
RMU-Specific Operation

Figure 4. BIU/RMU functional descriptions.

The Process Housekeeping module handles the power on and reset conditions by initializing the
internal counters, registers, and resetting the local timers. The details of this process are described in the
Housekeeping section.

The Process Input Data module continuously monitors the incoming data by converting the bit-
serial data stream to parallel words. It then stores the incoming data packet in the appropriate buffers to
be used by the rest of the system. The details of this process are described in the Input Data section.

The Process Output Data module transmits the outgoing data at the specified scheduled time. The
output data are either internal status report from the BIU or output data of the BIU’s associated processor.
Regardless, the output data words are first packetized with the appropriate header and then serialized for
transmission. The details of this process are described in the Output Data section.

The Process Record Status module keeps track of the errors by setting their designated bits in the
status register. The details of this process are described in the Reporting Errors section.

The Process Schedule Operation module manages loading of the scheduled operations from the
ERPOM/RAM by setting the appropriate address lines and issuing the read signal. It then decodes the
instructions and stores them in the appropriate buffers. The details of this process are described in the

Schedule Format and Schedule Controller sections.

The BIU/RMU has two types of interfaces: one to communicate with the BIU/RMU of the
channel and the other to communicate with BIU’s associated processor, Figure 1. The Input and Output
modules are designed to communicate with the BIU/RMU as well as the associated processor. Although
the BIU and RMU exchange data via serial fiber-optic buses, the data to and from the associated
processor of the BIU are exchanged in parallel words using separate FIFOs. In order for this module to
transmit and receive data simultaneously, two FIFO interfaces are, therefore, necessary to handle the
input and output data flux.

2.2 Packet Formats

The data and status information as well as the commands issued by the RMU are stored in
packets based on one of the formats depicted in the following figure. However, the type of packet format
is based on the nature of the information to be sent to the destination BIUs.

1| Sync-Header |||y _| BIUId |,/ Command
(8-bits) (5-bits) (8-bits)
K KMSR K K K
1 Sync-Header ololol .| BIU Id 0 Count 0 Data eoe | Data
(8-bits) (5-bits) (8-bits) (8-bits) (8-bits)
K KMSR K K K
Sync-Header BIU Id Count Status eoe Status
T (8-bits) 010111 -1 (5opits) |01 (8-bits) 01 (8-bits) 01 (3-bits)
Sync-Header, 8 bits =1111_1111
Sync-Pattern, 10 bits =1_1111_1111_0
BIU Id, 5 bits, identifies the destination of the packet.
Reserved =0_0000
Global Id, Reserved =1_1111
K = Sync Bit =1 ==> Sync-Header follows

=0 ==> Data, Command, or Status follows

M = Mode Bit =1 ==>Command
=0 ==> Data or Status

S = Status Bit =1 ==> Status
=0 ==>Data

R = Reserved Bit

Figure 5. Packet formats.

All packet formats share a common scheme. This underlying scheme consists of three 9-bit
words where each word is constructed from an 8-bit byte that is preceded with a synchronization bit (K).
The synchronization bit is zero except when indicating the Sync_Header.

The first word of a packet is the Sync_Pattern, the second word is a collection of flags and
BIU/RMU identification, and the third word is either a command or a count. To achieve synchronization
over a distance between BIUs and RMU, the Sync_Pattern (I_I1111_1111_0) is designed so that it is
guaranteed to be unique throughout the system. The Sync_Pattern is a unique 10-bit pattern consisting of
a string of 9 ones followed by a zero. Since the first bit of the second word has to be a zero, that bit is
used as part of the Sync_Pattern.

The second word consists of three 1-bit flags; Mode (M), Status (S), and Reserved (R) flags,
followed by a 5-bit identification field that is used for both BIU and RMU. The significance of the third

word depends on the flags that are set. If the Mode (M) bit is set, then the third word is a command for
the BIUs; otherwise, it is a count of data or status words to follow. In this case, the packet will be more
than three words long. Since count is an 8-bit field, the maximum number of status or data is limited to
255 words per packet.

If the Status (S) bit is set, then the packet holds status information and thus it is forwarded to the
output FIFO. Otherwise, it is a data packet intended for the BIU whose identification is in the packet
header. In this case, only the target BIUs fetch the packet and forward it to their associated processors
(via the output FIFOs), while all other BIUs simply ignore the packet.

The BIU Id can be used as another layer of redundancy to check against scheduled operations for
local detection of failures.

The Reserved (R) bit is not used at this time. It could be used as part of the BIU/RMU
identification and to expand the number of BIUs in a single backplane channel.

2.3 Performance

The calculation of the read bus bandwidth efficiency as a function of packet size follows.

Packet Overhead = MUX Switch Time + Data Packet Header + Overhead per Data Byte
where,

MUX Switch Time =1 clock tick = 1 Word = 9 bits

Data Packet Header = (Sync_Header + Flags) + BIU_Id + Count of Data Words

=3 Words = (3 * 9) bits
Overhead per Data =1 bit

So, with n = Number of Data Words as specified in Count Field,

Overhead =94+B*9)+(1*n)=4*9+n=(36+n) bits

9%0verhead = Overhead / Packet Size * 100 = (36 + n) bits / (4 + n) * 9) bits * 100
and

%Efficiency =1- %Overhead=n * 8/ ((n+4) *9)

As evident from the above equation, as n grows, so does the %Efficiency. The read bus
bandwidth efficiency is displayed as a function of data bytes in a packet in the following figure. As is
shown, the efficiency approaches the maximum (about 89%) for moderate size packets.

Effilency

100 ~

Bandwidth Efficiency

90

80

70

60

50

40

30

20

10

20

(=) o o o o o o o o o o o o o o o o o o
© ¥ 0 e > ® o 2 - ¢ & ¥ 2 & = 2 2 R I
Data Bytes

Figure 6. Channel read bus bandwidth efficiency as a function of packet size.

o
N
N

o
®
N

240

250

2.4 Reporting Errors

The status register, Status_Reg_0, is introduced to keep track of errors at various sub-modules.
Figure 7 provides a detailed description of the status register. Various bits of this register indicate
specific errors and, therefore, are set by their designated sub-modules upon detection of errors. The
content of this register is transmitted at the scheduled times and after setting the Status (S) bit of the
packet.

Bit Error Name Error Description

0 Read_FIFO_Error_1 Error in input FIFO data packet header

1 Read_FIFO_Error_2 Attempted to read from empty input FIFO, i.e. missing data
2 Receive_Error_1 Data didn’t arrive within the expected reception window

3 Receive_Error_2 Received unexpected data

4 EPROM_Error_Flag Didn't detect end-of-schedule in the EPROM/RAM

5 None None

6 None None

7 None None

Figure 7. Status_Reg 0, error bit assignments.

2.5 Housekeeping

After power on and upon reset the BIU/RMU resets its internal counters, clears its registers, and
resets its transmitter and receiver clocks. Figure 8 depicts the flowchart of the power on and reset
activities. If the BIU_OR_RMU bit is set high, the architecture is that of a BIU. It goes into a wait state
where the BIU awaits the Start_Cycle command from the RMU. Otherwise, the architecture is a RMU
and begins reading the scheduled operations and takes appropriate actions at the right times. As further
described in Section 3.8, Schedule Format, the first two instructions of the schedule are reserved for the
RMUs only. The first instruction indicates broadcasting of the Start_Cycle command to all BIUs in the
channel while the second instruction is a wait instruction for the RMU for the specified delta time so that
the BIUs can catch up with the RMU. Upon receiving the Start_Cycle command, the BIU resets its
internal counters, clears its registers, and resets its transmitter and receiver clocks. At this time, all BIUs
are synchronized with respect to the RMU. The BIUs and RMU then repeat reading the scheduled
operations and execute scheduled instructions at the specified times.

10

Power on / Reset

Reset Counters
Clear Registers
Start Clocks

v

BIU_OR_RMU ?

RMU

\ 4

Read scheduled
instructions and
operate on them

BIU
—

Wait

Reset Counters
Clear Registers
Adjust Clocks

Figure 8. Power on/reset operations.

2.6 Input Data

Data reception requires continuous conversion of bit-serial data stream to parallel bytes. The
incoming data bit stream is monitored to detect the Sync_Pattern. Figure 9 depicts the flowchart of the
incoming-data controller. Upon detection of the Sync_Pattern the receiver clock is adjusted so that the
following data are retrieved at appropriate word boundaries (see Section 3.6 System Clocks). If the
BIU_ID part of the second word does not match the BIU_ID of the particular instance of this module,
then the Status bit is examined. If the Status bit is not set then the rest of the data packet will be ignored.
Otherwise, the packet is treated as a Status packet and is simply routed to a FIFO in its entirety. If the
second byte matches the BIU_ID of a particular instance of this module, then the Mode bit is examined.
If the Mode bit is not set then the rest of the data packet will be treated as a data packet for this module
and will be routed to a FIFO. Otherwise, the packet is treated as a Command packet from the RMU and

the proper action will be taken.

11

l

Get First Byte

Get Second Byte

Status Bit=1? No

LYes Yes

Process Status

Mode Bit=1?
(Command)

Process Data <4 Process Command

Figure 9. Incoming-packet controller.

To accommodate for minor variations in the lengths of the busses, a reception window is
established to provide an added flexibility to the architecture. The duration of this window is controlled
externally and can range from 0 to 7 byte clock ticks by setting the three Switch_Time_In bits. The
maximum reception window of 7 byte clock ticks allows for a maximum of 7 bytes * 9 bits per byte * 10
ns per bit = 630 ns = 630 feet variations in the lengths of the busses (assuming a 100 MHz clock, and that
light travels 1 ft/ns). The reception window starts at the scheduled data reception time, and lasts as long
as the reception window size or until a data packet is received. If the scheduled data packet is not
received during this time or if it arrives outside this window, then the errors are reported by setting their
designated bits, bits 2 and 3, respectively, in the error register Status_Reg_0. Figure 7 provides a detailed
description of the status register.

Voting of the data is an RMU-specific function and is performed by all RMUs in a redundant
multi-channel system to provide fault tolerance for the full FBL/PBW backplane. In a redundant multi-
channel system, all RMUs broadcast their input data to all other RMUs as data become available.
Therefore, a BIU output is available to all RMUs at the same time. Each RMU then votes on the data it
receives from RMUSs of other channels and on the data from the corresponding BIUs of its channel,
Figures 1 and 2. In case of any discrepancy, the faulty BIU is identified and masked out. The voted BIU

12

output is broadcast in the local channels. Since the design and development of the voter module is
beyond the scope of this work, the voter implementation is left for future work.

2.7 Output Data

Data transmission requires reading a data packet from a FIFO, checking the data integrity by
examining the packet header, and converting the data bytes into a continuous serial bit stream. Figure 10
depicts the flowchart of the outgoing-data controller. If the packet header, specifically the Sync_Pattern,
is not detected at the expected time, then an error is registered and the transmission operation is aborted.
Also, to avoid issuing any commands by the microprocessor to the RMU and to safeguard against any
undesirable side effects, the Mode bit is examined. As previously described in Figure 5, if the Mode (M)
bit is set, then that word is a command for the BIUs. Therefore, to guarantee that the commands are
issued and, thus, the Mode bit is managed from inside the FBL/PBW backplane architecture (specifically
only by the RMU), the Mode bit is examined and if it is set by the BIU’s associated processor, then an
error is registered and transmission operation is aborted.

i

> Get First Byte

— Get Second Byte

Read and
transmit the rest
of the packet

Mode Bit=1?
(Command)

Record Error
and
Stop

Figure 10. Outgoing-packet controller.

2.8 System Timers
To synchronize and maintain synchronization between the receiver of a BIU/RMU and the

transmitter of another BIU/RMU at the proper word boundaries, the receiver needs to constantly adjust to
the transmitter. As a result, the receiver part of a BIU/RMU must operate with a different timer than the

13

rest of the unit. To prevent propagation of phase shifts in the receiver timer to the rest of the system and
safeguard against any side effects, a second timer, the transmitter timer, is introduced. Therefore, the
BIU/RMU has two timer regions: a receiver timer region and a transmitter timer region. To maintain
design flexibility, provisions are made so that the transmitter timer can be adjusted and synchronized with
the receiver timer; however, it must only be done when the BIU/RMUs are in the idle state. The
synchronization of the transmitter timer with the receiver timer is achieved as a scheduled event and at the
desired synchronization interval via a RMU command.

Separation of the two timers has the added advantage of applicability to a broader class of
architectures by eliminating the fix distance constraint between the BIUs and RMU of one channel as well
as between the RMUs of multiple channels. In addition, the cost of the second timer, four flip-flops, is
negligible.

Although the data in and out of the BIU/RMU are serial bit streams, the BIU/RMU operates at 9
bit word boundaries. Therefore, the BIU/RMU requires system timers that operate at the word level.
Since the serial data bit streams are 9-bit words, the system clocks are derived from the incoming bit
clock by dividing the bit clock by 9. Operating at the word level has the advantage that most of the
BIU/RMU operates at a slower clock rate and the peripherals such as the FIFOs and EPROM/RAM can
be slower devices. This slower clock rate allows for less stringent requirements on the signal load and
routing, and therefore, is more cost effective. In addition and from the user’s perspective, delta time for
the scheduled operations will be with respect to the system timers and, hence independent of the
communication rate.

2.9 FIFO

In order to make the simulation results comparable to those of the prototype boards, the generic
FIFO module developed for this design is modeled after Am7204A' FIFO chips. This VHDL model is
comparable with the Am7204A FIFO in both interface and timing characteristics. In addition, this VHDL
FIFO model is a generic model so that by adjusting its parameters, it can be defined to be as wide, deep,
and fast as necessary. This VHDL model is synthesizable and the VHDL code is included in Appendix A.

2.10 EPROM

For simulation purposes a high level VHDL model of a generic EPROM was developed that is
pin-to-pin and package compatible with a generic RAM. However, for design flexibility, the interface for
this module is modeled after the NM27C128, 128k-word x 8-bit EPROM? and HM6264ALSP, 8192-word
x 8-bit High Speed Static CMOS RAM?® which are pin-to-pin and package compatible. The EPROM
module contains the scheduled instructions and the relative time of their operations. The EPROM has to
be 16-bit wide and deep enough to hold all scheduled events. The schedule format is described in the
following section and schedule examples are listed in Appendix D.

" Am7204A is a CMOS FIFO and a product of the Advanced Micro Devices.
* Products of National Semiconductor Corporation.
* Products of HITACHI Corporation.

14

2.11 Schedule Format

The scheduled events and instructions are stored in an EPROM or a RAM based on the format
depicted in the following figure.

Delta Time Transmit Receive Status/Data/Command BIU/RMU Id
(8-bits) (1-bit) (1-bit) (1-bit) (5-bits)

EPROM/RAM Width = 16 bits
Status/Data/Command = S/D/C

AT = Delta Time >= (0 ==> Delta Time between consecutive instructions
Tx = Transmit Bit =1 ==>Transmit
=0 ==>No-op
Rx = Receive Bit =1 ==>Receive
=0 ==>No-op
S/D/C = Status Bit =1 ==> Data for BIU and Command for RMU
=0 ==> Status
Id= BIU Id =1..30 (base 10)

End of schedule delimiter is 31 in base 10 (i.e. XXFF in base 16)

Tx Rx S/D/C Descriptions

0 0 0 RMU and BIU No-op

0 0 1 N/A

0 1 0 N/A

0 1 1 RMU and BIU Receive Data

1 0 0 RMU and BIU Transmit Status

1 0 1 RMU Transmit Command and BIU Transmit Data
1 1 0 N/A

1 1 1 RMU and BIU Stop

Example:

In the following schedule example, RMU Id = 27 and Global Id = 31.

AT Tx Rx S/D/C _1d Descriptions
10 1 0 1 27 RMU will transmit Start_Cycle command after 10 clock cycles
5 0 0 0 27 RMU will do nothing and waits for 5 clock cycles until BIUs restart
5 1 0 0 27 RMU will transmit its status after 5 clock cycles
1 0 1 1 31 All BIUs should expect to receive data in 1 clock cycle
4 1 0 0 1 BIU 1 will transmit its status information after 4 clock cycles
2 0 1 1 31 All BIUs should expect to receive data after 2 clock cycles
19 1 0 1 3 BIU 3 will transmit its data after 19 clock cycles
1 0 1 1 4 BIU 4 should expect to receive data after 1 clock cycle
15 1 1 1 31 i.e., OFFF, all BIUs stop reading the schedule after 15 clock cycles

Figure 11. Schedule format for EPROM/RAM.

15

The scheduled events are 16 bits wide, i.e. two 8-bit bytes. The little-endian notation is used to
describe different segments of the schedule events. The first byte is reserved for delta time. This allows
for a time interval between two consecutive events to be at most 256 system timer ticks. However, to
extend this time interval beyond 256 clock ticks, no-op instructions should be inserted between the actual
events. The three most significant bits of the second byte are used in the communication process.
Specifically, bit 7 of the second byte indicates transmission event, bit 6 indicates receiving event, and bit
5 indicates the nature of the event as being status, data, or command. The five least significant bits, bits 4
through 0, identify the RMU/BIU that is scheduled to take the appropriate action after the delta time has
elapsed. Therefore, this format allows for one RMU and a maximum of 29 BIUs per channel.

The first two instructions of the schedule are reserved for the RMUs only. The first instruction
indicates broadcasting of the Start_Cycle command to all BIUs in the channel. The second instruction is
a wait instruction for the RMU for the specified delta time so that the BIUs can catch up with the RMU.
The duration of the wait time is a function of the communication means and the delay in processing of the
Start_Cycle command by the RMU and BIUs. The wait time, therefore, is given by the following
equation:

Wait Time = Command Process Delay + Read Bus Delay

The Command Process Delay is a constant delay and is determined to be five system timer ticks
for this implementation. It is the total delay in constructing the package, transmitting the Start_Cycle
command by the RMU, and receiving the command by the BIUs. The Read Bus Delay is determined by
the time it takes for the data to reach from the RMU to the BIUs of the channel and is directly
proportional to the length of the bus. Since the BIUs are assumed to be of equal distances from the RMU
of the channel, after elapse of the wait time, the BIUs will be synchronized with respect to the RMU. The
example depicted in Figure 11 indicates a Delta Time of 5 system timer ticks. The second instruction of
the schedule corresponds to the read bus delay of zero.

When the bit 7 of the second byte is set high, it is interpreted by the BIUs as a transmit
instruction. However, the RMU interprets it as a switch channel instruction and uses the BIU identity
field, bits 4 through 0, as the multiplexer select lines to switch to the appropriate BIU write bus.

2.12 Schedule Controller

Reading of the scheduled operations from the EPROM/RAM requires setting the appropriate
address lines and issuing the read signal. The Schedule Controller manages loading of the instructions
from the EPROM/RAM. The scheduled instructions are pre-fetched, decoded, and stored in appropriate
buffers. In particular, the time field is extracted and stored in the Delta_Time_Clock and the instruction
field in the Instruction_Buffer registers. The current instruction is then decoded. The corresponding flags
that initiate the execution of the specific operations, such as transmit and receive, are raised only after the
elapse of the delta time. Section 3.9 provides a detailed description of the scheduled instructions in
EPROM/RAM.

16

2.13 BIU Testbench

The BIU testbench, Figure 12, encompasses the BIU/RMU and all the necessary components for
its normal operations as a separate prototype board. The adjoining components are an EPROM/RAM that
contains the scheduled events of operations, a FIFO for the input data, a FIFO for the output data, and a
microprocessor (PC) with its associated input and output files that acts as the BIU font-end. A single
external bit (BIU_OR_RMU = VCC) specifies its functionality to be a BIU. These components are an
integral part of testing BIU/RMU functionality.

A \
\
BIU-Id | | vee
\ \
| \
% - i
\ \
g v v
FIFO-Out Data_Out Data Data Clock
BIU OR_RMU 3
3 3
3 16 EPROM/
¢ uP_Data_Bus BIU/RMU RAM
® Control (Schedule)
3 IORD
3 IOWR
3 € Data_In
FIFO-In g > @ O | Flags cs INTR
é 3 8
”
IORD IOWR Dat
Address ata 8 Input File
AEN
Legend:
Wire —> PC 8
Fiber > Output File

Figure 12. BIU testbench.

2.14 RMU Testbench

Analysis of the behavior of the RMU revealed that by preserving the BIU interface to the FIFOs,
the RMU’s interface could be defined as a special case of the BIU’s interface. As a result, one FIFO is
used for both input and output of data for the RMU.

The RMU testbench, Figure 13, encompasses the BIU/RMU and all the necessary components for
its normal operations as a separate prototype board. The adjoining components are an EPROM/RAM that
contains the scheduled events of operations, a single FIFO for both the input and output data, and a
microprocessor (PC) with its associated input and output files that acts as the RMU front-end. The RMU
testbench, therefore, is similar to the BIU testbench and by proper setting of a single external bit
(BIU_OR_RMU = GND), its functionality is distinguished from that of BIU. These components are an

17

integral part of testing BIU/RMU functionality.

A x
RMU-Id | GND
\ \
g o
[\
. .
Data_Out Data Data Clock
BIU OR_RMU 3
FIFO-
o 16 EPROM/
ut - 3 uP Data Bus BIU/RMU RAM
In Control (Schedule)
IORD
3 IOWR
3 Data_In
Flags CS INTR
&3 8
Y
IORD IOWR A 4dress Data 8 Lnout File
AEN p
Legend:
Wire —> PC 8
Fiber - > Output File

Figure 13. RMU testbench.

2.15 Microprocessor (PC)

The microprocessor (PC) is a high level representation of a generic microprocessor and is
designed for simulation and testing purposes only. For simulation and testing flexibility, the
microprocessor is designed so that it could be tailored to represent processors with different read cycles,
different write cycles, and different clock rates. Also, different instances of this module can be
programmed to transmit different counts of data packets with different data packet sizes. However, a
particular instance of a microprocessor transmits a given number of data packets of the same sizes. Also,
the microprocessor is assumed to have an identical copy of the BIU/RMU schedule.

The microprocessor operations are shown in the following flowchart, Figure 14. Since the
microprocessor is assumed to be independent of the BIU, the communication between the BIU and its
associated microprocessor is therefore asynchronous. As a result, the microprocessor receives an
interrupt from its associated BIU at the start of every schedule cycle and after receiving the Start_Cycle
command from the RMU. The microprocessor will reset the FIFOs, sample the sensors, send the data to
the input FIFO, and then acknowledges the interrupt to the BIU. Note that the microprocessor can read
processed data from the output FIFO at any time. This data is assumed to be stored in either a large cache
or an output file. For simulation and testing purposes the data sent to the input FIFO is the output of
counters internal to the microprocessor module.

18

Interrupt From BIU

Reset FIFO (s)

'

Sample external
input data and
send data to BIU
via Input FIFO

'

Acknowledge
Interrupt

'

Figure 14. Microprocessor operations.

2.16 Fault Injection

There are many methods of injecting faults in the system. Three methods of injecting faults into
this system are described here. The first is the brute force method where a BIU is turned off. Since at
power down the exact state and condition of the BIU is not known, this method of fault injection is
random. In simulation, however, turning off the BIU can be accomplished by forcing the BIU to reset
where it waits in the idle state during the simulation process. This method of fault injection covers the
fail silent scenario.

The second way of injecting a fault is through the schedule and by instructing the BIU to stop
transmitting data at a specific time. In effect, the BIU goes off line at the designated time. As a result,
the time of fault occurrence is predicable. Since the fault can be scheduled to occur at a specific time, this
method is extremely helpful in examining integrity of the system in the presence of a fault at different
states of the system. This method, therefore, provides a general means to analyze the architecture under
various crash failures.

The third method is also through the schedule but by switching the channel to another BIU,
preferably an unattached BIU. As a result, even though all BIUs are functioning normally, switching to a
bogus channel will in effect disrupt proper routing of the intended BIU output to the target BIUs. This
method can simulate data packet corruption through the write bus as well as BIU babbling.

19

These fault injection methods cover only a subset of the faults that this architecture is designed to
tolerate. In the interest of time, further failure analysis and evaluation of this architecture is left for future
work.

2.17 Fault Recovery

In the case of brute force method where a BIU is powered down, the BIU can be reintroduced
into the system upon power on and at the start of the next schedule cycle. At power on, the BIU resets its
internal registers and enters the idle state, Figure 8, awaiting the Start_Cycle command from the RMU
before restarting its normal operations. Therefore, this fault recovery capability lends itself to upgrading
the system by taking the BIUs off line, one at a time, and without having to power down the whole
system.

In all other cases, where a BIU is either babbling or is not transmitting data, the BIU may recover
from the fault provided that the fault is not persistent. In that case, the BIU may recover at the start of the
next schedule cycle and upon receiving the Start_Cycle command from the RMU. However, if the fault
persists for more than one schedule cycle, then the BIU may never recover.

2.18 Reporting Faults

Regardless of the nature and timing of the faults, as far as the rest of the system is concerned, the
symptoms are the same. These symptoms eventually show up on the read and write busses. When
matched against the scheduled activities on these busses, the faulty BIU and nature of the fault is
identified. The symptoms indicate whether the faulty BIU is babbling or is not transmitting at the
scheduled time. These errors are reported by setting their designated bits, bits 2 and 3, respectively, in the
status register Status_Reg_0. Figure 7 provides a detailed description of the status register. A more
descriptive error reporting would require time stamping the errors. However, this implementation is left
to future enhancements.

20

3. Hardware Development

The FBL/PBW backplane was developed using VHDL. The VHDL code was synthesized using
Synergy, a Cadence product, and targeted for the Xilinx FPGAs [3]. The FPGAs along with other off-
the-shelf ASIC devices were used to construct a prototype board that would plug into the PC-AT bus.
The PC was then used as the front-end to the prototype boards for both programming the FPGAs and for
controlling the operations and data transfer to the boards during the normal operations. Instead of
designing one board to function as a RMU and designing a different board to function as a BIU, it was
decided to take advantage of the flexibility provided by FPGAs to develop a single design so that a board
could be programmed to function as either a RMU or a BIU. To be able to program the FPGAs, a PAL
was used to decode the base address of the I/O ports on the prototype board. For design flexibility, a
generic interface was designed so that any microprocessor could interface with the board during its
normal operations. This generic interface was separately programmed on a XC3020 [3]. The rest of the
VHDL code encompasses the BIU/RMU module and was programmed on a XC4005A [3] that was
selected for its size and larger number of I/O pins than the XC3020. The prototype board was wire-
wrapped, tested, and its functionality verified. The prototype board functioned at 40 Mbps and
demonstrates that the FBL/PBW backplane implementation was feasible.

3.1 PAL

The PC interface logic* for programming the XC3020 of the prototype board was implemented
using a PALL22V10’. The base address of the prototype board was 300H. Address 306H was used to
reset and address 307H was used to reprogram the XC3020 FPGA. The rest of the addresses were used to
interact with the FIFOs and XC4005A. When resetting the XC3020, bits 0 and 1 of the PC data bus were
used to control the RESET and Done/Program signals of the XC3020, respectively. For programming of
the XC3020 the PC data bus bit-0 was used to download the binary file to the XC3020. The VHDL
implementation of this interface is listed in Appendix A, the related C code is listed in Appendix B, and
the pin assignment is listed in Appendix C.

“IBM, “IBM Technical Reference for Personal Computer AT, # 6280070.”
> Product of AMD Corporation.

21

3.2 Address Assignment

The address assignment and their purposes in the prototype board are as follows:

New Address Device Function

300H XC3020 Read/Write FIFOs

301H XC3020 Read status of FIFOs

302H XC3020 Write status (Reset FIFOs)
303H XC4000 Transfer Data

304H None None

305H XC3020 Reset and Program XC4000
306H PAL Reset XC3020

307H PAL Program XC3020

3.3 XC3020 and Microprocessor Interface

The XC3020 was programmed with a generic interface to allow a BIU and its associated
application microprocessor to exchange data. The application microprocessor is assumed to be either an
Intel 80X86 type or Motorola 68XXX type. In the prototype board the host PC played the role of
application microprocessor after initial board setup and programming of the FPGAs. Since the
application microprocessor accesses the FIFOs through its data bus and performs either read or write
operation, the output bus of the output FIFO and the input bus of the input FIFO are tied to the
microprocessor data bus via a bus controller. When exchanging data with the FIFOs, the bus controller
relinquishes control to the microprocessor; otherwise, it tri-states the bus so that there will not be any
interference with the microprocessor’s normal operations. The VHDL implementation of this interface is
listed in Appendix A and the related C code is re listed in Appendix B.

3.4 Programming XC4005A and Testing FIFOs

Upon setting up the prototype board and programming the XC3020, the XC4005A can be
reprogrammed to implement the BIU/RMU functionality. Independent programming of the XC3020 and
XC4005A allows for ease of modification to the BIU/RMU without having to turn off and on the PC and
setting up the prototype board. The control signals of the XC4005A, i.e., Program and Done signals, are
brought into the XC3020, and the XC4005A status are stored in a status register. Contents of this register
are then accessed by the microprocessor for test and debugging purposes. Also, to enable monitoring of
the status of the FIFOs, the FIFO status flags, e.g., Full-Flag, Empty-Flag, and Half-Full, are also stored
in a status register and are accessed by the microprocessor. The VHDL implementation of this interface
is listed in Appendix A and the related C code is listed in Appendix B.

22

4. Simulation Results and Test Cases

In this section two test cases are presented to demonstrate the capabilities of the FBL/PBW
backplane. In the first test case the system operation under ideal conditions is examined. In the second
case failure of a BIU due to power down or reset is studied.

The single channel under study consists of one RMU and four BIUs. To examine the operations
of the system under various conditions, a generic schedule is setup to encompass all aspects of the fault
injection and recovery while exercising all BIUs. In these test cases the schedule consists of transmission
windows for the BIUs in the following order: 1, 2, 3, 4, 1, 2, 1, and 3. The following figure shows the
typical activities of the BIUs during one scheduled period in the absence of faults.

BIU 2 output BIU 4 output

B e Lbvsy Proec Bun Soes Opios Bk =lm] =]
COMPILE | SIMULATE | aun | comn| \wReak | stee] oven|
File Edit Zoom Cursor Oplons
] Jres_out = @ (TTT S ﬂ
[] Jrma_in = 0 QAT TR TR TR TR PO T A T o [AR M
[] /wie_im = B 111111y LT T CEE O SR LT ER T EPETTETTREPT) —
=] #mux_select = 10908010 100 NI T T 7/ T | T1 81 S
[/eata_eut - @ TR ﬂllllHHlﬂ]llllaﬂ‘l::rﬁ-mllﬂlllll
1 ,-'I:uiu_u-ut_‘l = B |'I_|..
[] /bis_out_2 - @) TRUET L
] /ele_sut_3 = & [TIEANN
] /bds out & = B m_)
b s
Al 0 K1 _ Li
Mow: 10 us Dela: 4 THID ne e 19980 ns

Figure 15. Typical scheduled activities.

In Figure 15 and subsequent figures, rmu_out is the output of the RMU that appears on the read
bus. rmu_in is the input data to the RMU after multiplexing the BIU outputs from the write buses. biu_in
is the same as rmu_out but at the input of the BIUs. mux_select indicates the selection value and hence
the particular BIU output to be routed via the RMU. biu_out_i corresponds to the output of the BIU i that
appear on its write bus. The horizontal axis is the time axis.

4.1 Ideal Case

In this case as shown in Figure 16, the system operation is shown under ideal conditions where
the delays in the read and write busses are assumed to be zero and no fault exists. In this case, the BIU
and RMU clocks are shown to be in perfect synchrony. The Schedule for this test case is listed in
Appendix D.

23

= Y-hpeinm - [Wavn

B Be Livsy Posct Bun Sgrak Opbors Wedow Help =181
COMPILE | stMuLaTE | aun | comn| eReak | ster] oven|

File Edit Foom Cursor Optons

YR bit_clock = @

Vrmi_oul = B IANTERN TR0
rmu_in = 0 T LIV T
Yhiw_im = @ I 1] —
Umiig_select = 10008011 [Amenpie [1 [saadn I A n@ngi

/data_sut = 0
Ybiu_out 1 = 0

Yiii_net_2? = 0

hiu_pmt_3 = 0

Uisio omlt b o= 10

Vudfulfu fsyne_detected = 0
ululsol SFiwed_bygke clock =
Vulfulsol feariable _byte clock
et fullfud fsyne_detected = 0
il Sulsol S iwed _byke clock =
Vil fulfud feariable_byte_clock
Sl ulsud fAntrpt_out = @
VPl fglobal resel cycle bar

10 ws

A | IC | o

Mrw? 300 us Dekiac 4 TROM nve o) 19320 me

Transmission slots for BIUs 1 2 3 4 1 2 1 3
in one schedule cycle:

Figure 16. Ideal conditions.

Figure 17 and 18 are the details of Figure 16. In Figure 17 transmission of the BIU_3 can be
traced to appear at the output of the RMU after a few clock ticks. In Figure 18 the Sync_Header appears
at the output of RMU and is detected by the BIU_1. Upon resynchronization, BIU_1 issues an interrupt
to its associated processing element.

24

BIU_3 transmission BIU 3 output appears at the output of RMU

Fia Libisy Fsesi Hun Sinals Oeéws oo al®l=
coMPilE | smeuwate | Aul | cowr| erese)\ sTER| oven|

File Edit Zoom Cuidsr Dplisss
reg_bit clock = 0

re_gut = 1
Srey in = 0

Shiu_in = 1

S _select = 101 B@an [TAi add \ / [#h 0 [i sbiiin
Sdats_out = B JIJHJTI_I_IJ"IJ_INLI_I],!ILIJJLIJ__U'IJ_I_IUL_I_U'I_H_[
Fhiu_sut_1 = @ |y
i _sut_2 = @ I'mi) e N\

biu_sut_3 - 8 U imnnn wumin)

iiu_sul_& = @ /_'|_|_|_|' 1L 1L

il i _detected = 0 N 1 1

putsunsunsFixed_syee_etock = {1 MM CU U LU0 O Ll L UL
pusvunsuseariabte_byte_crock [M MMM MU LNL L LU UL
|

Futalfutfsygne_detectesd = 0 1
utd Sl ud s Fised_Byte_clock = {7 LU il siaisiaiaialiilaisialy
rud fmifud fearianle_byte_eleck |7 LU if IsaTaialalil}

Yulfelfudfinkrpt_out = @
Fulfelfglobal _reset_cecle bar

us 12 us ST 43 aes

! A i | 7|
7 = Mow: 30 us Delte: 4 \ 11 us 4o 11800 ns
N

BIU 1 and RMU clocks are synchronized

Figure 17. Ideal conditions, BIUs and RMU are in perfect synchrony.

25

Sync_Headers

B Lbrwy Byoecl Hun Ggrsk Opers siedes Helo =l#| =]
COMPILE | SIMULATE | Aus | comt| BREsE | STER| XvER|

File Edit Foom Camor OpSiens \
rrau_bit_clock = 4 -

Frmi_owl = @ |_u'_|_ |

Femi_in = @ (
biu_in = @ \I 1 II/
g _=eleck = 10108811 S~ __—
fdata_smt = @
biu_owt 1 =
biu_owt P =
Fhiu_owt_3 =
biu_owt b o= @
ud/ulied/sync_detected = @
Fulsulret FLeed_byte cleck = 4 T L LT LT LT L L L L L L L LI L]
Fudduiset fuariakle_hyte_elock J_J_I_I_I_I_J_I_I__IFI:=I>§I__U_I__I__I_I_I__J
|

ulfulfel fsyne_drtooted = @

utulsel s Fined ke cleck = 3 [T T[] W ML Lot
ot fune) fuariasle_byte_clock | 7 L L L : A1 1PN : L L L L
Fulfulfet Fintrpt_out = 0 1

ulfuifglobal resek_cycle bar /
v " ke I B o f gl
=|

7 - 2l /Hﬂ:!ﬂu.- Deha: 4 \Tlﬂﬂlnlhzlﬁhu H
/ N\

BIU 1 detects Sync_Header and resynchronizes with RMU BIU 1 sends interrupt to PC

L

o9

1

IIE

Figure 18. Start-Cycle command, BIU clocks are re-synchronized with the RMU clock.

4.2 Failing a BIU

Forcing the BIU to reset simulates, for example, failure of a BIU due to loss of power. In this test
case, the system starts with all BIUs functioning normally. BIU 1 is then forced to reset in the middle of
a scheduled period. As a result, BIU 1 (biu_out_1I signal in Figure 19) stops executing scheduled
instructions and is taken off line. Figure 19 depicts system activities for three consecutive scheduled
cycles. As evident from Figure 19, BIU 1 (biu_out_I) stops transmitting for the rest of the second
scheduled cycle. Figure 20 is a detailed picture of Figure 19 and depicts system activities for the duration
of the second cycle. In case of loss of power, BIU 1 will remain off line. However, after it is powered
on, BIU 1 will recover at the start of the next scheduled period. The BIUs have similar behavior in the
case of reset. In other words, if a BIU is reset during normal operation, it will recover and join the system
at the start of the next scheduled period although the RMU may choose to mask it out. Figure 21 provides
the details for the recovery of BIU 1. The Schedule for this test case is listed in Appendix D.

26

BIU 1 Fails

B B Livsy Pojeci Bun Sgrak Opiors Wedow Help =181
COMPILE | stMuLaTE | aun | comn| eReak | ster] oven|
File Edit Foom Cursor Optons

Yenu_bit_clock = 1

ra_out = § I 111 | L1l

Fm_im = 0

Ybiu_im = @

mix_select = 1000811
data_sut = @

Vi _omt_1 = 0

miw_nwt_3 = @

iy out_3 = 0

Vi _omt_b o= 0

wldfullfud fsyne_detected = 0
ruB il ¢ Fiwed_bygte clock = 4
wlfulful feariable byte clock
wifulifud fsync_detected = 0
Yuludsul Sfiwed bygte clock =
wifubful fvariable hgyte clochk

et fulifud fintrpt_out = @
Vol fglobal reset cycle bar
L
| | o 1 i | H
fuljul Mirw” G g Delac 4 Tl to 58977 e
Schedule cycles 1 2 3

Figure 19. BIU 1 is powered down for one cycles.

27

File Edit Zoom Curssr Dpiicss
reg ik clock = @
ren_sut = 0 QAT I THTA T AT 1T SN 1T MuEI N (TN MR
TR B T LAl]

Sreg_in = 0

Shi_in = 0

JRuE_seleck = T01R@RT)
Fdata_out = @

Fhiu_sut_1 = @

Fhiu_sut_2 = @

Shiu_suE_3 = @

Shiu_sul_&% = @

AUl uT S sgne_detected = 0
Ul U1 Figed_Byte_elock =
udfuiful feariable_hyte cleck
ul Sl U feyne_detected = 0

Ful el fFived_Byte_clock -
Fut el feariable byte oletk
Fulfelful fEnErpt_out - @

rud fud fglobal_reset_cpcle_bar

r] - :
|fl-l'|.h'| Mows B0 us Delte: A 25700 ns be IGLEOD ns

L]

Figure 20. BIU 1 is powered down (detail).

BIMB#HHHEBI‘EH_MH#

81z
COMPILE | SIMULATE | RUN | CONT| BREAE | STER| OVER|
File Edit Zoom Curder Dplioss
e st erock 3 T T T T T T T TR TP T T T
rey_put = 0 ML | —
Srmy_in = 0 | 1
rbiu_in = 1 e Tl

JRuE_seleck = T01R@RT)
Fdata_out = @

Fhiu_sut_1 = @

Fhiu_sut_2 = @

Shiu_suE_3 = @

Shiu_sul_&% = @

AUl uT S sgne_detected = 0
Gl il il Fised_Byte_elock = § 7] [
uluiful feariable_byte_cleck |] T
ul Sl U feyne_detected = 0 fi
fussudful/Fixed_byto_etock « § T T 17 1 1S LT LS LITLS LI LT LI LELT LT LTLT]
Juldalfut Seariable hyte oledk J_|_|_|_|_|_|_|_|_|_|_|_|_|_|_'|_|_|_

fut falfud ARk rpt_out = @

[1
Futselfglobal_reset_cecle bar | 1
' LS ' ' ' ' ' ' tE v '
-
A _ o 7| i i
[Mow: 60 us Delea: 4 G004 s te I0IST ns

Figure 21. BIU 1 recovers, Start-Cycle command.

28

S. Summary

A single channel, fault-tolerant, fiber-optic backplane was developed to study the feasibility of
the proposed architecture by Palumbo [1]. This backplane also assists with the investigations of behavior
of the architecture in the presence of faults. The particular implementation of the architecture that is
presented here enables a RMU to connect to as many as 29 BIUs; however, for testing purposes a
maximum of four BIUs are sufficient to demonstrate full channel functionally. The architecture is
designed, developed, and implemented using VHDL. Time constraints did not allow for a full hardware
implementation; however, a large segment of the developed architecture is synthesized and implemented
in hardware using Xilinx FPGAs on multiple prototype boards. The prototype boards are designed so that
they can be configured to function as either a BIU or a RMU. Analysis of the test cases shows the
feasibility of the backplane as well as backplane integrity in the presence of faults and recovery from
faults.

5.1 Future Enhancements

There are two areas that require enhancements. The first is the design and development of a voter
module for the RMU so that the backplane can be replicated and the proposed architecture can be studied
in its entirety. The other enhancement is the introduction of a new parameter in the schedule, probably a
third byte, to account for the variable length buses and to make the switch-time overhead minimal. This
feature could replace the data arrival window currently implemented and thus maximize bus utilization.
This parameter, delta time, needs to be associated with BIUs and its value needs to be an indication of the
distance to the RMU so that the RMU switches the multiplexer after this delta time.

29

References

[1] Dan Palumbo: Fault-Tolerant Processing System. U.S. Patent Number 5,533,188, July 2, 1996.
[2] IEEE Standard VHDL Language Reference Manual, IEEE 1076-1987.

[3] Xilinx, “The Programmable Gate Array Data Books,” 1992 and 1994.

30

Appendi x A
VHDL Codes

Fil e Conventi ons:

Al'l nodul es are separated into entity and architecture pairs and
are stored in separate files. The file nane convention used is as
foll ows:

filename filetype.vhd

where, in order to maintain the file names conpatibility on the PC and
the workstation the filenane is restricted to only six characters.
The filetype is a single character and can be e for entities, a for
architectures, t for testbenches, or p for packages. Al files have
t he sanme vhd extensions. For instance, the FIFO nodule is stored in
fifo_e.vhd and fifo_a.vhd files.

Al files have a docunent section where the file attributes
i ncluding the author, file nane, file use, and all of the activities
are chronol ogi cal |y descri bed.

Nam ng Conventi ons:

The reserved words are in |ower cases while the user defined nanes are
either all in upper cases or at least the first character is in upper
case. All user defined names are as descriptive as possible and
underline characters are used to make them | egi bl e.

The 1/0 signals have one of the follow ng forns:
Signal _Nanme_In for input signals,
Si gnal _Nanme_Qut for output signals, and
Signal _Nanme_In_Qut for input and output signals.

Active low signals are defined as:
Si gnhal _Nane_Bar

31

Fil e Nane:

Host Machi ne:
Tar get Machi ne:
Envi r onnent

CNSTNT_2. VHD

GATEWAY 486/ 33 (| BM AT O one)

GATEWAY 486/ 33 (I BM AT d one)

Model Technol ogy VHDL Sinul ation for Wndows (\Ver 4.2e)
DOS Version 6.2

Organi zati on: NASA- LaRC

Proj ect : Fly By Light - Power By Wre (FBL-PBW
Aut hor : Mahyar R Mal ekpour

Creation Date: 3/ 19/ 96

Nane/ Nunber :
CNSTNT_P. VHD

Abstract:

(entity/architecture)

Acr onyns/ Abbr evi ati ons:

FBL/ PBW

Dependenci es:
none

d obal Objects:
Excepti ons:

Machi ne/ Conpi | er

Dependenci es:

Revi si ons:

Modi fied on: 4/9/ 1996

by: Mahyar Mal ekpour
Addr ess Devi ce Use
PORT_ADDRESS _0 XC3020 Read/ Wite Fl FOs
PORT_ADDRESS_1 XC3020 Read Status of FIFO
PORT_ADDRESS_2 XC3020 Wite Status (reset FIFGCs)
PORT_ADDRESS_3 XC3020 Transfer data between FI FCs
PORT_ADDRESS_4 Not used
PORT_ADDRESS_5 XC3020 Reset and Program XC4000
PORT_ADDRESS_6 PAL Reset XC3020
PORT_ADDRESS_7 PAL Pr ogr am XC3020
Revi si ons:

Modi fied on: 4/18/ 1996

by: Mahyar Mal ekpour

Changed port names here instead of

Modi fi ed on:
by:
Added Dat a_Lengt

in the |NTRFC_A VHD file.

8/ 9/ 1996
Mahyar Mal ekpour
h_Plus_1 and Sync_Pattern.

library | EEE ;
use | EEE. std_| ogi c_1164. al |

package CNSTNT_P is

const ant PORT _Length : integer := 2 ;

const ant Dat a_ ADDRESS : std_logic_vector (PORT_Length downto 0) := "000" ;
const ant St at us_ADDRESS : std_l ogi c_vector (PORT_Length downto 0) := "001" ;
const ant Command_ADDRESS : std_l ogi c_vector (PORT_Length downto 0) := "010" ;
const ant PORT_ADDRESS 3 : std_logic_vector (PORT_Length downto 0) := "011" ;
const ant PORT_ADDRESS 4 : std_logic_vector (PORT_Length downto 0) := "100" ;
constant PROG 4000_ADDRESS : std_l ogi c_vector (PORT_Length downto 0) := "101" ;
const ant PORT_ADDRESS 6 : std_logic_vector (PORT_Length downto 0) := "110" ;
const ant PORT_ADDRESS 7 : std_l ogic_vector (PORT_Length downto 0) := "111" ;
const ant BASE_ADDRESS : std_logic_vector (6 downto 0) := "1100000" ; -- 300 thru 307
const ant Data_Length : integer := 7 ;

const ant Data_Length_Plus_1 : integer := Data_Length + 1 ;

32

const ant

const ant

Transmt_Byte_Length :

Sync_Pattern :

std_l ogi c_vector (Data_Length_Plus_1 downto 0)

i nt eger

=9

BIUIDO is reserved and should not be used.
Only the lower 5 bits are part of the ID and higher 3 bits are reserved.

-- Thus, there are a total of 32 - 2 = 30 BIURMJ in a channel.

-- Mnus 2 because ID =0 is ignored and ID = 31 is a global id.

-- 8/20/96

constant BlIUIDO : std_|logic_vector (Data_Length downto 0) := "00000000"
constant BIUID 1 : std_logic_vector (Data_Length downto 0) := "00000001" ;
constant BlIUID 2 : std_|logic_vector (Data_Length downto 0) := "00000010" ;
constant BIUID 3 : std_logic_vector (Data_Length downto 0) := "00000011" ;
constant BlIUID 4 : std_|logic_vector (Data_Length downto 0) := "00000100" ;
constant BIUIDJ5 : std_logic_vector (Data_Length downto 0) := "00000101" ;
constant BIUID 6 : std_|logic_vector (Data_Length downto 0) := "00000110" ;
constant BIUID 7 : std_logic_vector (Data_Length downto 0) := "00000111" ;
constant BlIU ID 8 : std_|logic_vector (Data_Length downto 0) := "00001000" ;
constant RMU ID 1 std_l ogi c_vector (Data_Length downto 0) := "00011011" ; --
constant RMU ID 2 std_l ogi c_vector (Data_Length downto 0) := "00011100" ; --
constant RMU_ID 3 std_l ogi c_vector (Data_Length downto 0) := "00011101" ; --
constant RMU ID 4 std_l ogi c_vector (Data_Length downto 0) := "00011110" ; --
constant dobal _BIUID: std_|logic_vector (Data_Length downto 0) := "00011111"

constant Bit_Clock _Period : tine := 10 ns ;
const ant Delay_2 ns : tine := 2 ns ;
const ant Delay 5 ns : time :=5 ns ;
const ant Delay_7_ns : tine :=7 ns ;
const ant Delay_10 ns : time := 10 ns
const ant Delay_12_ns : tine := 12 ns ;
const ant Delay_15 ns : time := 15 ns
const ant Delay_20_ns : tine := 20 ns ;
const ant Delay_25 ns : time := 25 ns
const ant Delay_30_ns : tine := 30 ns ;
end CNSTNT_P ;
-- File Nane: PAL22V_E. VHD
-- Host Machi ne: GATEWAY 486/ 33 (I BM AT d one)
-- Target Machine: GATEWAY 486/ 33 (I BM AT d one)
-- Envi ronnent Model Technol ogy VHDL Sinul ation for Wndows (Ver 4. 3f)
-- DOS Version 6.2
-- Organi zation: NASA- LaRC
-- Project: Fly By Light - Power By Wre (FBL-PBW
-- Author: Mahyar R Mal ekpour
-- Creation Date: 09/ 21/ 95
-- Name/ Nunber:
-- PAL22V (entity)
-- Abstract:

Acr onyns/ Ab
FBL/ PBW
BIU -

Dependenci e
| EEE. STD

d obal hje

SI GNAL DEFI NI TI ON :

brevi ati ons:

Bus Interface Unit

S:
LOG C 1164

cts:

33

This file contains the entity declaration for the PCinterface that wll
be programmed on a PALL22V10.

©= "111111110"
27
28
29
30
-- 31

-- Exceptions:
-- Machi ne/ Conpi | er Dependenci es:
-- Revisions:

-- Modi fied on: 10/12/95
-- by: Mahyar Mal ekpour

-- 1. Added CLK In signal to this entity for use by the D flip-flops.

-- 2. Added X CLK CQut signal to separate the reset-port and program port
-- operations. The CLK In is yied to the reset-port and thus to CLK Qut,
-- while the X CLK out is tied to programport and is generated for the

-- Xilinx chip.

-- Modi fied on: 10/ 16/95
-- by: Mahyar Mal ekpour

-- 1. "CLK_In" nust be hooked up to pin "1" of the PAL22V10, it is the
-- clock pin of all flip-flops inside the PAL.

-- 2. "CLK Qut" must be hooked up to "CLK In". It is the feedback clock
-- generated by the internal logic of the PAL and is used to latch in DO and
-- D1 signals.

-- 3. "Done_Prog_Bar" nust be hooked up to "FeedBack_Done_Prog". It is
-- the feedback for tri-stating the input signal. The Picdesign was wasting
-- too much of the internal |ogic blocks and 1/0O pins beyound our

-- expectations and was requiring another PAL to do the job! By manually

-- feeding this signal back to the PAL | managged to tri-state it w thout

-- additional PAL and saved a lot of I/Opins in the current PAL.

library | EEE;
use | EEE. std_|l ogi c_1164. al | ;

entity PAL22V is

port (
-- Inputs
CLK_In in std_logic ;
ADDRESS in std_|logic_vector (9 dowmnto 0) := (others =>"'0")
AEN in std_logic ; -- Address enable, active high
| ONR_Bar in std_logic ;
| ORD_Bar in std_logic ;
RESET in std_logic ; -- Power on reset, active high
Do in std_logic ;
D1 in std_logic ;
INIT :in std_logic ;
FeedBack_Done_Prog : in std_logic ;
-- Qutputs
Done_Prog_Tristate : out std_logic ;
CLK_Qut : out std_logic ;
X_CLK_Qut : out std_logic ;
Dat a_CQut : out std_logic ;
Reset _Qut : out std_logic ;
-- In/Qutputs
Done_Prog_Bar : out std_logic) ;
end PAL22V ;
-- File Narme: PAL22V_A. VHD
-- Host Machi ne: GATEWAY 486/ 33 (|1 BM AT Cl one)
-- Target Machine: GATEWAY 486/ 33 (I BM AT d one)
-- Environnent : Model Technol ogy VHDL Sinul ation for Wndows (Ver 4.3f)
-- DOS Version 6.2
-- Organi zation: NASA- LaRC
-- Project: Fly By Light - Power By Wre (FBL-PBW

34

-- Author: Mahyar R Mal ekpour
-- Creation Date: 09/ 21/ 95

-- Name/ Nunber :
-- PAL22V (architecture)

-- Abstract:
-- This file contains the architecture for the PCinterface that wll
-- be programmed on a PALL22V10.

-- S| GNAL DEFI NI TI ON :

-- Acronyns/ Abbrevi ati ons:
-- FBL/ PBW
-- BlU - Bus Interface Unit

- - Dependenci es:
-- | EEE. STD_LOG C_1164

-- G obal Objects:

-- Exceptions:

-- Machi ne/ Conpi | er Dependenci es:
-- Revisions:

-- Modi fied on: 10/3/95
-- by: Mahyar Mal ekpour

-- 1. The Xilinx programport is at address 301 Hex.
-- 2. The reset-port is at address 300 Hex.

-- 3. Renaned the Reset_CQut_Bar signal to Reset_Qut for it is a user

-- programmabl e signal. Reset_Qut signal is tied to the power on RESET

-- signal and the D1 signal. Through D1, it can be progranmed to stay high
-- or low provided the reset-port is addressed. The reset-port address is
-- 300 Hex, for now.

-- 4. Built a latch for the D1 signal so that the Reset_Qut signal can be
-- user progranmabl e.

-- Modi fied on: 10/12/95
-- by: Mahyar Mal ekpour

-- 1. The latch is not inplenentable on the PAL via the Cadence PicDesign
-- tools. Since the PAL has D flip-flops, | have redefined the latch
-- construct as a Dflip-flop for the D1 signal.

-- 2. Added CLK In signal to the entity of this architecture.

-- By feeding back the CLK Qut signal generated by the PAL to the PAL via
-- the CLK_In signal (pin 1), the CLK In signal could be used to clock

-- (latch) the D1 signal. A good test of the tools used (Cadence PicDesign
-- here) is that it should tie the CLK In signal to pin 1 of the PAL.

-- Note: The CLK In signal assignment to pin 1 should never be altered.
-- 3. Added X CLK Qut signal to separate the reset-port and program port
-- operations. The CLK In is tied to the reset-port and thus to CLK CQut,
-- while the X CLK out is tied to programport and is generated for the

-- Xilinx chip.

-- Modi fied on: 3/12/96
-- by: Mahyar Mal ekpour

-- 1. The Xilinx programport is at NEW address 307 Hex.
-- 2. The reset-port is at NEWaddress 306 Hex.

library | EEE ;
use | EEE. std_|l ogi c_1164.all ;

35

architecture PAL22V_Behavi our of PAL22V is

signal PORT_1_SELECTED : std_logic ;
signal PORT_2_SELECTED : std_logic ;

constant PORT_1_ADDRESS : std_|l ogic_vector (9 downto 0) := "1100000110"
constant PORT_2_ADDRESS : std_logic_vector (9 downto 0) := "1100000111" ;
begi n

Check_Addresses : process (ADDRESS, AEN, | OAR Bar, | ORD Bar)
vari abl e TEMP, TEMP2, TEMP3 : std_logic :='0" ;

begin
TEMP2 : = (not AEN) and (not | OAR Bar) ;

if (ADDRESS = PORT_1_ADDRESS) then

TEMP = "1
el se

TEMP .= 'O’
end if ;

-- writing to reset-port
PORT_1_ SELECTED <= TEMP and TEMP2 ;

if (ADDRESS = PORT_2_ADDRESS) then

TEMP : = "1" ;
el se
TEMP :='0" ;
end if

-- witing to program port
PORT_2 SELECTED <= TEMP and TEMP2 ;

end process ;

-- Need to be able to reset the Xilinx for |onger than one wite cycle.
-- Therefore, we need to latch the D1 signal that is used to reset the
-- Xilinx.
Latch_Process : process (CLK In)
begin

if (Rising_Edge (CLK_In)) then

Reset _Qut <= DO ;

end if

end process ;

CLK Qut <= not (PORT_1_SELECTED) ;
X_CLK_Qut <= not (PORT_2 SELECTED) ; -- not (PORT_SELECTED and (not | OAR Bar)) ;
Data_Qut <= DO ;

Latch_DP _process : process (CLK In)
begin
if (RRrsing_Edge (CLK_In)) then
Done_Prog_Bar <= D1 ;
end if ;
end process ;

Tri_State_Process : process (FeedBack_Done_Prog)
begi n
if (FeedBack_Done_Prog = '1'") then
Done_Prog_Tristate <= '0' ;
el se
Done_Prog_Tristate <= 'Z' ;
end if ;

end process ;

36

end PAL22V_Behavi our ;

-- File Nane: FI FO_E. VHD

-- Host Machi ne: GATEWAY 486/ 33 (|1 BM AT Cl one)

-- Target Machine: GATEWAY 486/33 (|1 BM AT Cl one)

-- Environnent : Model Technol ogy VHDL Sinul ation for Wndows (Ver 4.3f)
-- DOS Version 6.2

-- Organi zation: NASA- LaRC

-- Project: Fly By Light - Power By Wre (FBL-PBW

-- Author: Mahyar R Mal ekpour

-- Creation Date: 7122/ 1996

-- Nane/ Nunber :

-- FI FO (entity)

-- Abstract:

-- This file contains the entity declaration for a generic FlFO
-- It conforms with the FIFO chip used in our board, i.e., AW??
-- S| GNAL DEFI NI TI ON :

-- Full _Flag_Bar -- active low, '1' ==> not full, '0" ==> full

-- Enpty_Fl ag -- active high, '0" ==> enpty, '1" ==> not enpty
-- HF_Fl ag_Bar -- active low, '1'" ==> not half full, '0" ==> half full
-- Acronyns/ Abbrevi ati ons:

-- Dependenci es:

-- | EEE. STD_LOGQ C_1164

-- dobal Objects:

-- Exceptions:

-- Machi ne/ Conpi | er Dependenci es:

-- Revi sions:

-- Modi fied on: ??/??/96

-- by: Mahyar Mal ekpour

library | EEE ;

use | EEE. std_l ogic_1164.all ;

entity FIFOis

generic (
Peri od : time := 100 ns ;
Dept h : natural :=10; -- 2 K for now
W dt h : natural :=7) ; -- 8-bit Byte
port (
Data_In cin std_|l ogi c_vector (Wdth downto 0) ;
Dat a_CQut ;. out std_|l ogic_vector (Wdth downto 0) := "Zz2z277777" ;
Reset _Bar in std_logic ; -- :="1" ;
Read_Bar cin std_logic ; -- :="1" ;
Wite_Bar in std_logic ; -- :="1" ;
Full _Flag_Bar : out std_logic ; -- active low
Enpty_Fl ag :out std_logic ; -- active high
HF_Fl ag_Bar : out std_l ogic -- active |l ow
)
end FI FO ;
-- File Name FI FO_A. VHD

37

-- Host Machi ne: GATEWAY 486/ 33 (|1 BM AT Cl one)
-- Target Machine: GATEWAY 486/ 33 (I BM AT d one)

-- Environnent : Model Technol ogy VHDL Sinul ation for Wndows (Ver 4.3f)
-- DOS Version 6.2

-- Organi zation: NASA- LaRC

-- Project: Fly By Light - Power By Wre (FBL-PBW

-- Author: Mahyar R Mal ekpour

-- Creation Date: 7122/ 1996

-- Name/ Nunber :

-- FI FO (entity)

-- Abstract:

-- This file contains the entity declaration for a generic FlFO
-- It conforms with the FIFO chip used in our board, i.e., AW??

-- SI GNAL DEFI NI TI ON :

-- Full_Flag_Bar -- active low, '1' ==> not full, '0'" ==> full
-- Enpty_Fl ag -- active high, '0" ==> enpty, '1" ==> not enpty
-- HF_Fl ag_Bar -- active low, '1'" ==> not half full, '0" ==> half full

-- Acronyns/ Abbrevi ati ons:

-- Dependenci es:
-- | EEE. STD_LOGQ C_1164

-- dobal Objects:

-- Exceptions:

-- Machi ne/ Conpi | er Dependenci es:
-- Revi sions:

-- Modi fied on: 8/9/96
-- by: Mahyar Mal ekpour
-- Fine tuned a bit nore today.

library | EEE ;

use | EEE. std_| ogi c_1164. al |

use ieee.std _logic_arith.all ;
use work.ny_std_logic_arith.all

architecture FlI FO Behave of FIFO is

type Menory is array (0 to Depth - 1) of integer ;
signal FIFO Menory : Menory ;

begin

process (Read_Bar, Wite_Bar, Reset_Bar)

vari abl e Del ay : time ;= Period / 3 ;

vari abl e Count : natural range 0 to Depth := 0 ;

variable Read_Ptr : natural range O to Depth := 0 ;

variable Wite_Ptr : natural range O to Depth := 0 ;

vari abl e TEMP . integer :=0 ;

begin

if (Read_Bar = '1') and (Wite_Bar = '1') and (Reset_Bar = '0') then
Wite Ptr : = ;
Read_Ptr =0 ;
Count =0

Full| _Flag_Bar <= '1' after Delay ;
Enpty_Fl ag <= '0" after Delay ;
HF_Fl ag_Bar <= '1" after Delay ;
Data_OQut <= "ZZzZz77777" ; -- a must here

38

elsif (Reset_Bar = '1'") then
if (Falling_Edge (Wite_Bar) and (Count < Depth)) then
Count := Count + 1 ;
TEMP : = To_Integer (Data_ln) ;
FI FO Menory (Wite_Ptr) <= TEMP ;

Wite_ Ptr := (Wite_Ptr + 1) nod Depth ;
end if ;

if (Falling_Edge (Read_Bar) and (Count > 0)) then
TEMP : = FIFO Menory (Read_Ptr) ;
Data_Qut <= To_StdLogi cVector (TEMP, 8) after 10 ns ;

Count := Count - 1 ;
Read_Ptr := (Read_Ptr + 1) nod Depth ;

elsif R sing_Edge (Read_Bar) then
Data_Qut <= "Zzzz777777" after 10 ns ; -- a nust

end if

if (Count = 0) then

Enpty_Flag <= '0" after Delay ;
el se

Enpty_Flag <= '1' after Delay ;
end if ;

if (Count >= Depth) then

Ful | _Flag_Bar <= '0' after Delay ;
el se

Ful | _Flag_Bar <= '1' after Delay ;
end if ;

if (Count >= Depth / 2) then
HF_Flag_Bar <= '0' after Delay ;
el se
HF_Flag_Bar <= '1' after Delay ;
end if ;

end if

end process ;

-- File Nane: XC3020_E. VHD

-- Host Machi ne: GATEWAY 486/ 33 (I BM AT d one)

-- Target Machine: GATEWAY 486/ 33 (I BM AT d one)

-- Environnent : Model Technol ogy VHDL Sinmulation for Wndows (Ver 4. 3f)
-- DOS Version 6.2

-- Organi zation: NASA- LaRC

-- Project: Fly By Light - Power By Wre (FBL-PBW
-- Author: Mahyar R Mal ekpour

-- Creation Date: 3/ 19/ 96

-- Name/ Nunber:

-- XC3020 (entity)

-- Abstract:

-- This file contains the entity declaration for the PCinterface and part
-- of the BlUthat will be programred on a Xilinx XC3020.

-- S| GNAL DEFI NI Tl ON :

-- Acronyns/ Abbrevi ati ons:

-- FBL/ PBW

-- BlU - Bus Interface Unit

- - Dependenci es:
-- | EEE. STD _LOd C 1164

39

-- G obal Objects:

-- Exceptions:

-- Machi ne/ Conpi | er Dependenci es:

-- Revi sions:

-- Modi fied on: 3/25/1996

-- by: Mahyar Mal

-- Added Chi p_Sel ect _Bar si gnal
-- Modi fied on: 4/9/1996

-- by: Mahyar Mal

-~ Added CCLK 4000, Din_

-- to the entity.
-- slave serial

4000, Prog_4000,

-- Modi fied on: 6/7/1996
-- by: Mahyar Mal
-- Added Direction signal

-- bidirectional

ekpour

ekpour

ekpour

periferal

to the entity.

node.

to the entity to control

-- value of Direction signal
-- when uP is reading fromports within the xc3020.

is high, i

.e.,

buffer that connects uP_Data bus to the XC3020.

uP is

It is needed in the XC4000.

I Nl T_4000, and DONE_4000 signals
They are used for programm ng of the XC4000 in both the
node and paral | el

flow of data thru 74LS245

witing,

The dehaul t
otherw se | ow only

library | EEE ;

use | EEE. std_|l ogi c_1164.all ;

use WORK. CNSTNT_P. al |

entity XC3020 is

-- the following 4 signals are not synthesizable and so are commented out.

port

-- 3/19/96

-- RESET

-- CLK I n

-- Serial _Prog_In

-- Done_Prog_Bar
Reset _BI U
Direction

Dat a_Read_Bar
Data_Wite_Bar

-- This signal

is

in
in
in
in
out
out

out
out

added

-- Mahyar 3/25/1996

Chi p_Sel ect _Bar out
ADDRESS in
AEN_Bar in
| OAR_Bar in
| ORD_Bar in
uP_Dat a_I n_Qut i nout
FI FO_Dat a_I n_Qut i nout
I nput _FI FO_Reset _Bar out
I nput _FI FO_Read_Bar out
Input _FIFO Wite_Bar : out
I nput _FI FO_Ful | _Bar in
I nput _FI FO Enpty_Bar : in
I nput _FI FO_HF_Bar in
CQut put _FI FO_Reset _Bar out
Qut put _FI FO_Read_Bar out
Qutput _FIFO Wite_Bar : out
Qutput _FIFO Full _Bar : in

Qut put_FI FO Enpty Bar : in
Qut put _FI FO_HF_Bar :

Bl U_FI FO_Read_Bar

BIU_FIFO Wite Bar

CCLK_4000
Prog_4000

in
in
in
out
out

std_| og
std_l og
std_| og
std_l og

std_| ogi
std_| ogi
std_| ogi
std_| ogi

OO0 00

because it is n

ic; --
ic;
ic;
ic;

eeded in the XC4000

std_logic ;

std_| ogi
std_| ogi
std_| ogi
std_| ogi

O00O0

_vector (9 downto 0)
; -- Address enabl e,

Power on reset,

active high

active high

std_l ogic_vector (Data_Length downto 0) ;
std_|l ogi c_vector (Data_Length downto 0)

std_| ogi
std_| ogi
std_| ogi
std_| ogi
std_| ogi
std_| ogi

std_| ogi
std_| ogi
std_| ogi
std_| ogi
std_| ogi
std_| ogi

O0OO00O0O0

(]

std_| ogi
std_logic

std_logic
std_logic

40

O0O00O00O0

I NI T_4000
DONE_4000

)

end XC3020 ;

Fi | e Nane:
Host Machi ne:
Tar get Machi ne:

XC3020_A. VHD

Envi r onnent Model
DOS Version 6.2

Or gani zati on: NASA- LaRC
Proj ect: Fl'y By Light -
Aut hor : Mahyar R Mal ek
Creation Date: 3/ 19/ 96
Name/ Nunber :

XC3020
Abstract:

in
in

std_| ogi
std_| ogi

GATEWAY 486/ 33 (1 BM AT d one)
GATEWAY 486/ 33 (1 BM AT d one)
Technol ogy VHDL Sinul ation for Wndows (Ver 4.3f)

Power By Wre
pour

c
Cc

(FBL- PBW

(architecture)

This file contains the architecture for the PCinterface and part

of the BIUthat wll
SI GNAL DEFI NI TI ON :
Acr onyns/ Abbr evi ati ons:
FBL/ PBW
BIU - Bus Interface Unit

Dependenci es:
| EEE. STD_LOGQ C 1164

G obal njects:
Excepti ons:

Machi ne/ Conpi | er Dependenci es:

Revi si ons:
Modi fied on: 4/9/ 1996
by: Mahyar Mal ekpour
Modified the entities to reflect
Modi fied on: 6/7/1996
by: Mahyar Mal ekpour

Nbdified the entities to reflect

library | EEE ;
use | EEE. std_l ogic_1164.all ;
use WORK. CNSTNT_P. al |

architecture XC3020_Behave of XC302

be programmed on a Xilinx XC3020.

the new y added XC4000 rel ated signals.

the new y added Direction signal.

Ois

conponent | NTRFC

port (
Reset _BI U
Direction
Dat a_Read_Bar

Data_Wite_Bar
Chi p_Sel ect _Bar
ADDRESS

| OAR_Bar

| ORD_Bar

uP_Data_I| n_Qut

out std_| ogi
out std_| ogi
out std_| ogi
out std_| ogi
in std_| ogi
in std_| ogi
in std_l ogi
in std_| ogi

inout std_| ogi

c

c

c

c

c ; -- chip select, active | ow
c_vector (PORT_Length downto 0) ;

c
c

c_vector (Data_Length downto 0) ;

41

begi

FI FO _Dat a_l n_Qut

I nput _FI FO_Reset _Bar
I nput _FI FO_Read_Bar

| nput _FI FO Wite_Bar
I nput _FI FO_Ful | _Bar
I nput _FI FO_Enpty_Bar
I nput _FI FO_HF_Bar

CQut put _FI FO_Reset _Bar
Qut put _FI FO_Read_Bar
Qut put _FI FO Wite_Bar
Qut put _FI FO_Ful | _Bar
CQut put _FI FO_Enpty_Bar
Qut put _FI FO_HF_Bar

Bl U_FI FO_Read_Bar
BI UFI FO Wi te_Bar

CCLK_4000
Prog_4000
I NI T_4000
DONE_4000

end conponent

inout std_| ogi

out
out
out
in
in
in

out
out
out
in
in
in

in
in

out
out
in
in

std_| ogi
std_| ogi
std_| ogi
std_| ogi
std_| ogi
std_| ogi

std_| ogi
std_| ogi
std_| ogi
std_| ogi
std_| ogi
std_| ogi

std_| ogi
std_| ogi

std_| ogi
std_| ogi
std_| ogi
std_| ogi

c_vector (Data_Length downto 0) ;

O0O0O0O0O0O0

o0

O0O000O0

O00O0

conponent uP_PRT

port (

)

ADDRESS
AEN_Bar
Chi p_Sel ect _Bar

end conponent

std_| ogi
std_| ogi
std_| ogi

c_vector (9 downto 0) ;

c

Cc

-- Address enable, active high

-- chip select,

active | ow

I NTRFC use entity work. | NTRFC (| NTRFC_Behavi our) ;
uP_PRT use entity work.uP_PRT (uP_PRT_Behave)

for all
for all

-- for

-- for
si gnal

I NTRFC

uP_PRT

Chip_Select : std_logic ;

W : INTRFC port map (Reset_BIU, Direction,
Data_Wite_Bar,

Ul : uP_PRT port map (ADDRESS, AEN Bar,

-- Send it out to the XC4000 as well
Chi p_Sel ect _Bar <= Chi p_Sel ect

Dat a_Read_Bar ,
Chi p_Sel ect,

ADDRESS (PORT_Length downto 0),
uP_Data_In_Qut,

| OAR_Bar,

| GRD_Bar ,
FIFO Data_I n_Qut,

I nput _FI FO Reset Bar, |nput_Fl FO Read_Bar,

I nput _FIFO Wite_Bar,

I nput _FI FO_Ful | _Bar,
I nput _FI FO_HF_Bar,

Qut put _FI FO_Reset _Bar,
_FIFO Wite_Bar,
Qut put _FI FO_Ful | _Bar, Qutput_FlI FO Enpty_Bar,
Qut put _FI FO_HF_Bar,

CQut put

Bl U_FI FO_Read_Bar,
CCLK_4000, Prog_4000,

end XC3020_Behave ;

I nput _FI FO_Enpty_Bar,

Qut put _FI FO_Read_Bar,

Bl U FI FO Wite_Bar,
NI T_4000, DONE_4000) ;

Chip_Select) ;

42

Fil e Nane:

Host Machi ne:
Tar get Machi ne:
Envi r onnent

Organi zati on:
Proj ect :

Aut hor :
Creation Date:

Nane/ Nunber :
I NTRFC

Abstract:

| NTRFC_E. VHD
GATEWAY 486/33 (1 BM AT O one)
GATEWAY 486/ 33 (I BM AT C one)

Model Technol ogy VHDL Sinul ation for Wndows (Ver 4.3f)
DOS Version 6.2

NASA- LaRC

Fly By Light - Power By Wre (FBL-PBW

Mahyar R Mal ekpour

10/ 24/ 95

(entity)

This file contains the entity declaration for the PCinterface that wll
be programmed on a Xilinx XC3000.

SI GNAL DEFI NI TI ON :

Acr onyns/ Abbr evi ati ons:

FBL/ PBW
Bl U -

Dependenci es:

Bus Interface Unit

| EEE. STD_LOGQ C_1164

d obal Objects:

Excepti ons:

Machi ne/ Conpi | er Dependenci es:

Revi si ons:

Modi fi ed on:
by:

10/ 24/ 95
Mahyar Mal ekpour

1. A head count of the I/O pins (as of now):
41 |/ O pi ns needed:

18 for two FIFGs, 8 data Ilines,
| OAR, and | ORD),

(AEN,

10 address lines, 3 control lines

and 2 fromthe two Fl FGCs.

XC300 provides us with 54 I/0O pins,

Ther ef ore,

our PCinterface should fit

i nsi de one XC3000, but the BIU

will not! The BIUwll require, at least, 18 I/O pins for the two FIFGs
interface in addition to its other 1/0 pins.

Modi fied on: 3/12/96

y: Mahyar Mal ekpour

1. Bring inthe half-full flags of the FIFGs. Two nore |/O pins used.

Modi fied on: 3/19/96

by: Mahyar Mal ekpour

Modi fied on: 6/7/1996

by: Mahyar Mal ekpour

-- Nbdified the entities to reflect the newy added Direction signal.

library | EEE ;
use | EEE. std_|l ogic_1164. all
use WORK. CNSTNT_P. al | ;

entity INTRFC is

-- the following 4 signals are not synthesizable and so are commented out.

port

3/ 19/ 96

RESET

CLK_In

Serial _Prog_In
Done_Prog_Bar

Reset _BI U

Di

rection

in
in
in
in

out
out

std_logic ;
std_logic ;
std_logic ;
std_logic ;

std_logic ;
std_logic ;

43

Power on reset,

active high

Dat a_Read_Bar ;. out std_logic ;

Data_Wite_Bar : out std_logic ;
Chi p_Sel ect _Bar cin std_logic ; -- chip select, active | ow
ADDRESS cin std_l ogi c_vector (PORT_Length downto 0)
| OAR_Bar in std_logic ;
| ORD_Bar in std_logic ;
uP_Data_I| n_Qut : inout std_logic_vector (Data_Length downto 0)
FI FO Data_ I n_Qut : inout std_logic_vector (Data_Length downto 0)
| nput _FI FO_Reset _Bar : out std_logic ;
I nput _FI FO_Read_Bar :out std_logic ;
I nput _FIFO Wite_Bar : out std_logic ;
I nput _FI FO_Ful | _Bar in std_logic ;
| nput _FI FO Enpty_Bar : in std_logic ;
I nput _FI FO_HF_Bar in std_logic ;
Qut put _FI FO_Reset _Bar : out std_logic ;
Qut put _FI FO_Read_Bar : out std_logic ;
Qut put _FIFO Wite_Bar : out std_logic ;
Qutput _FIFO Full _Bar : in std_logic ;
Qut put _FI FO Enpty_Bar : in std_logic ;
Qut put _FI FO_HF_Bar cin std_logic ;
Bl U_FI FO_Read_Bar cin std_logic ;
Bl U_FI FO Wite_Bar cin std_logic ;
CCLK_4000 :out std_logic ;
Prog_4000 ;. out std_logic ;
I NI T_4000 cin std_logic ;
DONE_4000 cin std_l ogic
)
end | NTRFC ;
-- File Nare: I NTRFC_A. VHD
-- Host Machi ne: GATEWAY 486/ 33 (|1 BM AT Cl one)
-- Target Machine: GATEWAY 486/ 33 (I BM AT d one)
-- Environnent : Model Technol ogy VHDL Sinul ation for Wndows (Ver 4.3f)
-- DOS Version 6.2
-- Organi zation: NASA- LaRC
-- Project: Fly By Light - Power By Wre (FBL-PBW
-- Author: Mahyar R Mal ekpour
-- Creation Date: 10/ 24/ 95
-- Name/ Nunber:
-- I NTRFC (architecture)
-- Abstract:

-- This file contains the architecture for the PCinterface that wll
-- be programmed on a Xilinx XC3000.

-- S| GNAL DEFI NI TI ON :

-- Acronyns/ Abbrevi ati ons:

-- FBL/ PBW

-- BlU - Bus Interface Unit
- - Dependenci es:

-- | EEE. STD LOd C 1164

-- WORK. CNSTNT_P. al |

-- dobal Objects:

-- Exceptions:

-- Machi ne/ Conpi | er Dependenci es:

-- Revi sions:

Modi fied on: 11/22/95
by: Mahyar Mal ekpour

Decl ared a constant, Xilinx_Delay, to reflect and study the effect of
i nherent propagation delay in the Xilinx 3000. The prelimnary resuts

indicate that we may have sonme timng problemwhile fetching, i.e.
reading, data fromthe Qutput_FI FO

Xilinx_Delay = 30 ===> it works

Xilinx_Delay = 40 ===> it doesn't work

Need to study this futher.

Modi fied on: 11/27/95
by: Mahyar Mal ekpour

Modi fied the code to overcone the timng problens associated with the
propagation delay i nposed by the Xilinx FPGA. Wile reading data from
the FIFO, the bidirectional bus is now controlled directly by the
| ORD Bar signal. Wth this arrangenent, the data bus will not be driven
by the FIFOs when the bus is to be tri-stated. The time period where the
| ORD Bar is active, when low, has to be Iong enogh to account for the
Xilinx delay as well as FIFO response tine. This time is about >= 70 ns.

Modi fied on: 11/30/95
by: Mahyar Mal ekpour

Modi fied the BIU Read_Wite_FI FO process to enulate activities of the
Bl Us. See notes by the BlU Read _Wite_FI FO process.

Modi fied on: 3/12/96
by: Mahyar Mal ekpour

Modi fied on: 3/28/96
by: Mahyar Mal ekpour

Added 4 new signals to this nodul e:

Reset _BlI U, uP_Data_Pin_5, uP_Data_Pin_6, uP_Data_Pin_7
These signal are send out for possible future use in other parts of the
BIU Wth this addition, all bits of the uP data bus are used when the
uP addresses the "reset" port. Thus, the uP can, thru software,
selectively and/or collectively reset parts or all of the system

uP_Dat a_I n_Qut
uP_Data_ln_Qut (
uP_Data_In_Qut (
uP_Data_In_Qut (
uP_Data_In_Qut (
(
(
(

0 reset input FlIFO

1) reset output FIFO

2) @ input FIFOwite and output FIFO read

3) : output FIFOwite and input FIFO read

4) : reset BIU, i.e., global reset
uP_Data_In_Qut (5) Not used
uP_Data_Iln_Qut (6)
uP_Dat a_I n_Qut

: Not used
7) : Not used

Modi fied on: 4/1/96
by: Mahyar Mal ekpour

Latched the reset conmands witten to the Command_ADDRESS from the uP
data bus into an internal register, Latched_Comrand, for futher use.

Modi fied on: 4/16/96

by: Mahyar Mal ekpour

The bit 4 of the latched command is used as a global reset to the BIU,
and hence is named Reset _BlIU. Wen high, the BIU and the FIFOs are reset.
Since it is latched, it nust be |lowered after sone time interval for the
nornmal operations to resune.

Nbdi fied on: 4/19/96
by Mahyar Mal ekpour
Si npl ified the code and got rid of the previous nodifications.

Modi fied on: 5/2/96

by: Mahyar Mal ekpour
Added the | ast segnent to the bus so data can be witten to and read from
the XC4000 via the same bus that is used to access the two Fl FGCs. Thus,
this bus, FIFO Data_In_Qut bus, is being driven fromfive directions and
thru three ports. This bus is also used to programthe XC4000 via the
XC3020 in the parallel synchronous prepheral node.

45

-- a. Data port:

-- 1. read FI FO _Qut

-- 2. wite FIFO In

-- b. PROG 4000 port

-- 3. program XC4000

-- c. 4000_Status port

-- 4. read BIU status

-- 5. wite schedule to RAM

-- Modi fied on: 6/7/1996
-- by: Mahyar Mal ekpour
-- Mdified the entities to reflect the newy added Direction signal.

-- Modi fied on: 8/27/96
-- by: Mahyar Mal ekpour

-- Once again there is a need to individually reset the FIFCs and
-- independely fromthe BIU Therefore, using the same old "reset" port
-- the FIFGCs and the Bl U can now be reset thru the follow ng data bits:

-- uP_Data_In_Qut (0) : reset input FIFO
-- uP_Data_In_Qut (1) : reset output FIFO
-- uP_Data_In_Qut (2) : Not used

-- uP_Data_In_Qut (3) : Not used

-- uP_Data_In_Qut (4) : reset BlU

-- uP_Data_In_Qut (5) : Not used

-- uP_Data_In_Qut (6) : Not used

-- uP_Data_In_Qut (7) : Not used

-- Thus, there is no such thing as gl obal reset anynore.
-- Note: | have also inverted the Reset_BlIU input, i.e., data bit 4, to

-- be consistent with the FIFO reset input bits. MJST reflect this change
-- in the ¢ C++ code of the test-bench.

library | EEE ;
use | EEE. std_| ogic_1164. al |
use WORK. CNSTNT_P. al | ;

architecture | NTRFC Behavi our of INTRFC is

si gnal Lat ched_Comrand : std_l ogic_vector (Data_Length downto 0)

si gnal Dat a_SELECTED Bar : std_logic ;
si gnal FIFO Read : std_logic ;
si gnal Status_SELECTED Bar : std_logic ;
si gnal Status_Read : std_logic ;

si gnal Comrand_SELECTED Bar : std_logic ;
signal PROG 4000_SELECTED Bar : std_logic ;
si gnal PROG 4000_Read : std_logic ;

begin

-- This process decifers the inconm ng address bits and activates one of
-- the selected ports used in this nodule.

Check_Addresses : process (Chip_Sel ect_Bar, ADDRESS)
begin

Command_SELECTED Bar <= '1' ;

Dat a_SELECTED Bar <= '1' ;

St at us_SELECTED Bar <= '"1' ;
PROG 4000_SELECTED Bar <= '1' ;

46

if (ADDRESS = Data_ADDRESS) and (Chip_Sel ect_Bar =

'0") then

-- Witing data to the Fl FOIn and readi ng data fromthe FIFO Qut

Dat a_SELECTED Bar <=

T o

elsif (ADDRESS = Status ADDRESS) and (Chip_Select_Bar ="'0") then
-- reading the FI FO st aus- regl ster contents
Status_SELECTED Bar <= '0'
el sif (ADDRESS = Conmand ADDRESS) and (Chip_Select_Bar ='0") then
-- Resetting the BIU and the FIFCs
Command_SELECTED Bar <= '0' ;
el sif (ADDRESS = PROG 4000 ADDRESS) and (Chip_Select_Bar = '0") then
-- reseting and programm ng the XC4000 and readi ng XC4000 status
-- fromthe INNT and DONE signals. Al thru the same port.
PROG_4000_SELECTED Bar <= '0' ;
end if ;
end process ;
-- Defining a bi-deirectional buffer for the data bus
-- The next two processes work together to define the bi-deirectional bus

uP_Read_FI FO St atus :

I'Nl T_4000, DONE_4000,

process (FIFO Read, Status_Read, PROG 4000 _Read,
FI FO _Dat a_l n_Qut,

| nput _FI FO_Ful | _Bar, |nput_FI FO Enpty_Bar, |nput_FIFO HF_Bar,
Qut put _FI FO_Ful | _Bar, CQutput_FI FO Enpty_Bar, Qutput_FlI FO HF Bar)
begi n

if (FIFORead = '0") then
uP_Data_In_Qut <= FIFO Data_In_Qut ;

elsif (Status_Read = '0") then
uP_Data_In_Qut (0) <= Input_FIFO Full_Bar ;
uP_Data_In_Qut (1) <= Input_FI FO Enpty Bar
uP_Data_In_Qut (2) <= |nput_FI FO HF_Bar ;
uP_Data_In_Qut (3) <= Qutput_FIFO Ful | _Bar ;
uUP Data_In_Qut (4) <= Qutput_FI FO Enpty Bar ;
uP_Data_In_Qut (5) <= CQutput_FI FO HF Bar
uP_Data_Iln_Qut (6) <='0" ;
uP_Data_In_Qut (7) <="'0" ;

el sif (PROG 4000 Read = '0' t hen
uP_Data_In_Qut (0) <= INI'T_4000 ;
uP_Data_In_Qut (1) <= DONE_4000 ;
uP_Data_In_Qut (2) <="'0" ;
uP_Data_Iln_Qut (3) <='0" ;
uP_Data_In_Qut (4) <="'0" ;
uP_Data_ln_Qut (5) <= '0' ;
uP_Data_In_Qut (6) <= '0" ;
uP_Data_Iln_Qut (7) <='0" ;
el se
uP_Data | n_Qut <= "ZZzZ77777"

end if ;

end process ;

uP_Wite FIFO: process (Data_SELECTED Bar, uP_Data_ln_CQut,
PROG_4000_SELECTED Bar)

begin
if ((Data_SELECTED Bar = '0') or (PROG 4000 _SELECTED Bar = '0')) then
FIFO Data_In_Qut <= uP_Data_ln_CQut ;
el se
FI FO Data_l n_Qut <= "Zz2777777" ;
end if ;
end process ;
Lat ch_Command : process (Conmmand_SELECTED Bar, uP_Data_ In_Qut, | OAR Bar)

begin
if (Command_SELECTED Bar "0) and (
Lat ched_Comrand <= uP_Data_l n_Cut ;
end if ;

IOAR Bar = '0") then Latch in the uP data bus.

end process ;

Time to reset the BlIU

47

Reset Bl U <= not Latched_Conmand (4) ;

-- The buffer should transfer data to the uP data bus whenever uP attenpts
-- to read any port in the XC3020 and xc4000.
-- 6/7/1996 Mahyar Mal ekpour

Direction <= | ORD Bar or Chip_Sel ect_Bar ;

-- Time to reset the FIFGCs

-- 8/27/96

| nput _FI FO_Reset _Bar <= Latched_Command (0) ;
Qut put _FI FO_Reset _Bar <= Lat ched_Comand (1) ;

-- Send the rest of the data bus out for future use in other
-- parts of the Bl U.

-- Mahyar 3/28/1996

Prog_4000 <= Latched_Command (5) ;

Dat a_Read_Bar <= Latched_Command (6)

Data_Wite_Bar <= Latched_Command (7) ;

-- Time toread or wite to the FIFGs
FIFO Read <= | ORD Bar or Data_SELECTED Bar

-- Tine to read the FIFGs status
Status_Read <= | ORD_Bar or Status_SELECTED Bar ;

-- Time to grogramthe XC4000
PROG 4000_Read <= | ORD_Bar or PROG 4000_SELECTED Bar
CCLK_4000 <= | OAR_Bar or PROG 4000_SELECTED Bar ;

-- This process processes all selected commands for reading and witing
-- tothe I/Oports. It also initializes the signals at the power on.
Command_Process : process (Data_SELECTED Bar, Latched_Conmand,
| ORD_Bar, | OAR Bar, Status_SELECTED Bar,
PROG_4000_SELECTED Bar)

begi n
-- Time to reset the system
-- if (Latched_Command (4) = '0") then -- i.e. if Reset_BlUis |low
-- 8/27/96
if (Latched_Command (0) = '0") then -- i.e. if reset input FIFO

-- The following 2 signals need to be high during the reset process
-- therefore, they can be tied and controled by a single data I|ine.
I nput _FIFO Wite_Bar <="'1" ;

elsif (Latched_Command (1) = '0") then -- i.e. if reset output FIFO
Qut put _FI FO_Read_Bar <= "'1" ;

el se
Input_FIFO Wite Bar <= | OAR_Bar or Data_SELECTED Bar ;
Qut put _FI FO_Read_Bar <= | ORD_Bar or Data_SELECTED Bar

end if
end process ;

Bl U Read_Wite_FIFO : process (Latched_Comrand,
BIU FIFO Wite_Bar, BlIU_FIFO Read_Bar)

begin
-- if (Latched_Command (4) = '0") then -- i.e. if Reset_BlUis |low
-- 8/27/96
if (Latched_Command (0) = '0") then -- i.e. if reset input FIFO

-- The following 2 signals need to be high during the reset process
-- therefore, they can be tied and controled by a single data I|ine.
I nput _FI FO_Read_Bar <="'1" ;

elsif (Latched_Command (1) = '0") then -- i.e. if reset output FIFO
Qutput _FIFO Wite_Bar <= "1" ;

el se

-- BlUis reading fromthe | nput_FlI FO
I nput _FI FO_Read_Bar <= Bl U_FI FO_Read_Bar ;

48

BlUis witing to the CQu
Qutput _FIFO Wite_Bar <= Bl

end if ;

end process ;

t put _FI FO
UFIFO Wite_Bar ;

end | NTRFC Behavi our ;

-- File Nane: uP_PRT_E. VHD
-- Host Machi ne: GATEWAY 486/ 33
-- Target Machine: GATEWAY 486/ 33

(1 BM AT Cl one)
(1 BM AT d one)

Power
pour

By Wre (FBL-PBW

Technol ogy VHDL Sinul ation for Wndows (Ver 4.3f)

-- Environnent Model

-- DOS Version 6.2
-- Organi zation: NASA- LaRC

-- Project: Fl'y By Light -
-- Author: Mahyar R Mal ek
-- Creation Date: 3/ 19/ 96

-- Name/ Nunber:

-- uP_PRT

-- Abstract:

the PC.
generats a chip select signal
This entity is to be programred
SI GNAL DEFI NI TI ON :
Acr onyns/ Abbr evi ati ons:
FBL/ PBW
BlU - Bus Interface Unit

Dependenci es:
| EEE. STD_LOG C_1164

d obal Objects:
Excepti ons:

Machi ne/ Conpi | er Dependenci es:

(entity)

on a Xilinx XC3020.

using only the upper bits,
to activate the BIU and uP interactions.

This file contains the entity declaration for the interface part of
It sinply decodes the address,

and

std_|l ogi c_vector (9 downto 0) ;

std_logic ;

std_logic -- chip select,

-- Address enabl e,

active high
active | ow

-- Revisions:
-- Modi fied on: 2?2/ ??/ 1996
-- by: Mahyar Mal ekpour
library | EEE ;
use | EEE. std_l ogic_1164.all ;
use WORK. CNSTNT_P. al |
entity uP_PRT is
port (
ADDRESS in
AEN_Bar in
Chi p_Sel ect _Bar out
)
end uP_PRT ;
-- File Nane: uP_PRT_A. VHD
-- Host Machi ne: GATEWAY 486/ 33

(1 BM AT d one)

49

-- Target Machine: GATEWAY 486/33 (|1 BM AT Cl one)

-- Environment : Model Technol ogy VHDL Sinul ation for Wndows (Ver 4.3f)
-- DCS Version 6.2

-- Organi zati on: NASA- LaRC

-- Project: Fly By Light - Power By Wre (FBL-PBW

-- Aut hor: Mahyar R Mal ekpour

-- Creation Date: 3/ 19/ 96

-- Name/ Nunber :

-- uP_PRT (architeture)

-- Abstract:

-- This file contains the entity declaration for the interface part of

-- the PC. It sinply decodes the address, using only the upper bits, and
-- generats a chip select signal to activate the BIU and uP interactions.
-- This entity is to be programmed on a Xilinx XC3020.

-- S| GNAL DEFI NI TI ON :

-- Acronyns/ Abbrevi ati ons:
-- FBL/ PBW
-- BIU - Bus Interface Unit

-- Dependenci es:
-- | EEE. STD_LOGQ C_1164

-~ ONSTNT_P
-- dobal Objects:

-- Exceptions:

-- Machi ne/ Conpi | er Dependenci es:
-- Revi sions:

-- Modi fied on: 2?2/ 2?2/ ??
-- by: Mahyar Mal ekpour

library | EEE ;
use | EEE. std_| ogi c_1164. al |
use WORK. CNSTNT_P. al | ;

architecture uP_PRT_Behave of uP_PRT is
begin

Check_Addresses : process (ADDRESS, AEN Bar)
begin
if (ADDRESS (9 downto (PORT_Length + 1)) = BASE ADDRESS) then
Chi p_Sel ect _Bar <= AEN Bar ;
el se
Chi p_Sel ect _Bar <= "'1'
end if ;

end process ;

-- File Nare: XC4005_E. VHD

-- Host Machi ne: GATEWAY 486/ 33 (|1 BM AT Cl one)

-- Target Machine: GATEWAY 486/ 33 (I BM AT d one)

-- Environnent : Model Technol ogy VHDL Sinul ation for Wndows (Ver 4.3f)
-- DCS Version 6.2

-- Organi zation: NASA- LaRC

-- Project: Fly By Light - Power By Wre (FBL-PBW

-- Author: Mahyar R Mal ekpour

-- Creation Date: 6/ 10/ 1996 based on xc4000 created on 03/22/96

50

-- Nanme/ Nunber:
-- XC4005 (entity)

-- Abstract:
-- This file contains the entity declaration for the FBL/ PBWfault-tolerant
-- architecture Bl U

-- S| GNAL DEFI NI TI ON :

-- BIU_ID : BIUID

-- SIn : Serial data into BIU

-- S Qut : Serial data out of BIU

-- Reset _BlI U . asserted by peripheral mcroprocessor to reset BIU, active high

-- This signal is active high because the Flip-Flops in
-- Xi l'inx 4000 require high for "clr"

-- FIFO Data_In : 8-bit data fromFIFOIn into BIU

-- FI FO_Read_Bar : triggers reading fromthe input FIFO, FIFO_In, active |ow
-- FI FO_Dat a_Qut : 8-bit data out of BIU to FIFO Qut

-- FIFO Wite_Bar : triggers witing to the output FIFO FIFO Qut, active |ow
-- Chi p_Sel ect _Bar : active low, used by uProcessor to select BIU for

-- uProcessor access.

-- Bl U_Reset : reset line to BIU from uProcessor, active |ow

-- ROM Dat a : data lines from EPROM

-- ROM Read_bar : active low, read line to EPROM

-- ROM_ADDRESS : address lines to EPROM

-- Clock_In : Input clock to the BIU = Bit clock

-- Cl ock_Qut : Qutput clock of the BIU = Byte cl ock

-- Acronyns/ Abbrevi ati ons:
-- FBL/ PBW
-- BlU - Bus Interface Unit

- - Dependenci es:
-- | EEE. STD_LOGQ C_1164

-- G obal Objects:

-- Exceptions:

-- Machi ne/ Conpi | er Dependenci es:
-- Revisions:

-- Modi fied on: 3/27/96
-- by: Mahyar Mal ekpour

-- Added "Reset_BIU' signal to clear the 4-bit counter and reset it in a
-- known initial state. This signal is active high because the Flip-Flops
-- in Xilinx 4000 require high for "clr"

-- Modi fied on: 4/12/96

-- by: Mahyar Mal ekpour

-- Added three address lines so that | can transfer data between the FlI FCs
-- on demand. Again, this is for internediate step and for test purposes.
-- It will have to be nodified later.

-- Modi fied on: 5/6/96

-- by: Mahyar Mal ekpour

-- Added the | ast segment of the FIFO Bus, FIFO Data_In_Qut, that connects
-- XC4000 to XC3020 and thus to the uP. It allows read and wite of data
-- to and fromthe XC4000 status registers as well as the adjoining RAM
-- that holds the schedul e of events. This segnent of the bus MJST be

-- tri-stated when not in use as other segnents are. Two new signals,

-- Data_Read_Bar and Data_Wite_Bar, were also added for the correspong

-- operation to be controlled by the uP.

-- Modi fied on: 8/22/96

-- by: Mahyar Mal ekpour

-- Added Switch_Time_In and INTRPT_CQut to this entity.

-- Switch Tine_In is provided to give the user nore control over the switch tinme.
-- INTRPT_Qut is used to let the uP know a new cycle started.

-- Modi fied on: 8/27/96

-- by: Mahyar Mal ekpour
-- Added INTRPT_ACK In to this entity.

51

-- INTRPT_ACK In is used to let the BIU know that the uP has serviced the

-- interrupt.

-- Modi fied on: 9/4/96
-- by: Mahyar Mal ekpour
-- Added MJX Select to this entity.

library | EEE ;

use | EEE. std_| ogic_1164. al |
use WORK. CNSTNT_P. al | ;

use WORK. EPROM P. al |

entity XC4005 is

PORT (
Bl U CR RMJ in std_logic ;
BIU ID in std_l ogi c_vector (Data_Length downto 0) ;
-- SIn in std_logic ;
-- S Qut out std_logic ;
Reset _BI U in std_logic ;
Chi p_Sel ect _Bar in std_logic ;
FIFO Data_ln in std_l ogi c_vector (Data_Length downto 0)
| nput _FI FO_Read_Bar out std_logic ;
I nput _FI FO_Ful | _Bar in std_logic ;
| nput _FI FO_Enpty_Bar in std_logic ;
I nput _FI FO_HF_Bar in std_logic
FI FO_Dat a_Qut out std_l ogi c_vector (Data_Length downto 0)
Qut put _FI FO Wite_Bar out std_logic ;
Qut put _FI FO_Ful | _Bar in std_logic ;
Qut put _FI FO_Enpty_Bar in std_logic ;
Qut put _FI FO_HF_Bar in std_logic
FI FO Data_I n_Qut inout std_l ogic_vector (Data_Length downto 0)
Dat a_Read_Bar in std_logic ;
Data_Wite_Bar in std_logic ;
Bit_C ock_In in std_logic ;
Byt e_d ock_CQut out std_logic ;
ADDRESS in std_l ogi c_vector (PORT_Length downto 0) ;
| OAR_Bar in std_logic ;
| ORD_Bar in std_logic ;
Serial _Data_ln in std_logic ;
Seri al _Dat a_Qut out std_logic ;
-- the folowing signals are for test purposes only
-- get rid of themlater
Lat ched_Sync_Qut : out std_logic ;
ROM Dat a in std_l ogic_vector (ROMWDTH - 1 downto 0)
ROM Read_Bar out std_Logic ; -- :="'0" ; ~-- active low
ROM Wite_Bar out std_Logic ; -- :="'0" ; ~-- active low
ROM_ADDRESS out std_|l ogic_vector (ROM ADDRESS LINES - 1 downto 0) ;
Switch_Tinme_In in std_logic_vector (2 domnto 0) ; -- three bits for now
I NTRPT_Qut out std_logic ;
I NTRPT_ACK In in std_logic ;
MUX_Sel ect out std_l ogic_vector (Data_Length downto 0)
)
end XC4005 ;
-- File Nare: XC4005_A. VHD
-- Host Machi ne: GATEWAY 486/ 33 (|1 BM AT Cl one)

-- Target Machine: GATEWAY 486/ 33 (I BM AT d one)

52

-- Environnent : Model Technol ogy VHDL Sinul ation for Wndows (Ver 4.3f)
-- DOS Version 6.2

-- Organi zation: NASA- LaRC

-- Project: Fly By Light - Power By Wre (FBL-PBW

-- Author: Mahyar R Mal ekpour

-- Creation Date: 6/ 10/ 1996 based on xc4000 created on 03/22/96
-- Name/ Nunber :

-- XC4005 (architecture)

-- Abstract:

-- This file contains the architecture for the FBL/PBWfault-tol erant
-- architecture Bl U.

-- SI GNAL DEFI NI TI ON :

-- BIU_ID : BIUID

-- SIn : Serial data into BIU

-- S Qut : Serial data out of BIU

-- FIFO Data_ln : 8-bit data fromFIFO In into BIU

-- FI FO_Read_Bar : triggers reading fromthe input FIFO, FIFO In, active |ow
-- FI FO_Dat a_Qut : 8-bit data out of BIU to FlIFO CQut

-- FIFO Wite_Bar : triggers witing to the output FIFO FIFO Qut, active |ow
-- Chi p_Sel ect _Bar : active low, used by uProcessor to select BIU for uProcessor access.
-- Bl U_Reset : reset line to BIU from uProcessor, active ?

-- ROM Dat a : data lines from EPROM

-- ROM Read_bar : active low, read line to EPROM

-- ROM_ADDRESS : address lines to EPROM

-- Bit_Cock_In : Input clock to the BIU = Bit clock

-- Byt e_d ock_CQut : Qutput clock of the BIU = Byte cl ock

-- Acronyns/ Abbrevi ati ons:
-- BIU - Bus Interface Unit

-- Dependenci es:
-- | EEE. STD_LOGQ C_1164

-- dobal Objects:

-- Exceptions:

-- Machi ne/ Conpi | er Dependenci es:
-- Revi sions:

-- Modi fied on: 5/20/96

-- by: Mahyar Mal ekpour
-- Added "Strobe" signal that is used to load in data fromthe FIFO In into
-- the p-to-s register. "Strobe" is active only for one bit clock cycle.

-- Modi fied on: 6/11/96
-- by: Mahyar Mal ekpour
-- Added P_to_S and S_to_P conponents.

-- Modi fied on: 6/12/96
-- by: Mahyar Mal ekpour
-- Added PSCON conponent.

-- Modi fied on: 6/17/96

-- by: Mahyar Mal ekpour

-- P_to_Sentity operates on the NEGATI VE edge of the Bit_C ock,

-- Sto P entity operates on the POSITIVE edge of the Bit_d ock,

-- and everything el se operate on the POSI TI VE edge of the Byte O ock.

-- Modified on: 8/1/96
-- by: Mahyar Mal ekpour

-- Read_Data_Count added to read the first three bytes, input data packet header,
-- fromthe input FIFO These three bytes are FF, BIU_ID, and Count respectively.
-- See notes in DATCLK_A VHD file.

-- Modi fied on: 8/2/96
-- by: Mahyar Mal ekpour

-- Registering the errors encountered in the designated bit position of the
-- Status_Reg_0.

53

-- Register Status_Reg_1 is put a side for the mcro-processor to wite whatever
-- seened necessay.

-- Modi fied on: 8/7/96

-- by: Mahyar Mal ekpour

-- Added Command_Data_Flag to make the npbst of the S to P Count. The S to_P_Count
-- is nowtreated as the command register while Command_Data_Flag is set high

-- and as a data byte counter when Command_Data_Flag is set |ow

-- Modi fied on: 8/8/96

-- by: Mahyar Mal ekpour

-- Added four tenporary buffers, Tenp_1_ Buffer thru Tenp_4 Buffer, so that
-- the first three bytes of the data packet header will be around for the next
-- three Byte clocks. It is essential to keep these header bytes around for
-- sending themto the output FIFO after matching the BIU_ID.

-- As a result, will have to FLUSH these buffers so that all of the incomm ng
-- data bytes are transfered to the output FIFO Thus, the total count is
-- +2 nore than the nunber of data bytes in the inconm ng data packet.

-- Therefore, | increased the size of the S to_P_Count counter by one bit to
-- acconpdate for the extra two dat bytes.

-- Modi fied on: 8/15/96
-- by: Mahyar Mal ekpour
-- Separating the Byte_Clock to handel the Sync_Detect ed.

-- Modi fied on: 8/22/96

-- by: Mahyar Mal ekpour

-- Added Switch_Time_In and INTRPT_Qut to this entity.

-- Switch Tinme_In is provided to give the user nore control on the swutch tine.
-- INTRPT_Qut is used to let the uP know a new cycle started.

library | EEE ;

--use | EEE. std_l ogic_1164.all ;

use WORK. CNSTNT_P. al | ;

use ieee.std_logic_arith.all ;

--use ieee.std_| ogi c_signed. CONV_| NTEGER ;
use work.ny_std_logic_arith.all ;

architecture XC4005_Behave of XC4005 is

conponent BYTCLK

port (Reset_BIU in std_logic ;
Start_Cycle in std_logic ;
Sync_Det ect ed in std_logic ;
Bit_Cock_In in std_logic ;
Fi xed_Byt e_d ock_CQut ©out std_logic ;
St robe_Qut ;. out std_logic ;
Vari abl e_Byte_Cl ock_Qut : out std_logic

)
end conponent ;

conponent S to_P

PORT (
Bit_Cock_In in std_logic ;
Serial _Data_ln cin std_logic ;
Par al | el _Dat a_Qut ;. out std_|l ogic_vector ((Data_Length_Plus_1) downto 0) ;
Mode_Bit _Qut :out std_logic

)
end component ;

conponent P_to_S

PORT (
Bit_Cock_In in std_logic ;
Paral l el _Data_In in std_l ogic_vector (Data_Length downto 0) ;
Mode_Bit_In in std_logic ;
Load_Paral | el in std_logic ;
Seri al _Dat a_Qut ©out std_logic

54

)

end conponent

conponent PSCON

port (
Load_P_TO S Count : in STD LOG C
Count _Val ue cin std_l ogi c_vector (Data_Length downto 0) ;
FI FO_Enpty_Bar in STD LOG C
Bit_d ock in STD LOG C
BYTE_CLOCK cin STD_LOG C ;
Read_FI FO Error ;. out std_logic ;
FI FO_RD bar : out STD LOE C)

end conponent

conponent HEADER

port (
Bl U OR RMJ in std_logic ;
Reset _BI U in std_logic ;
BIU ID in std_|l ogi c_vector (Data_Length downto 0)
Mode _Bit_In in std_logic ;
Data_In in std_l ogic_vector (Data_Length_Plus_1 downto 0)
Byte_C ock_In cin std_logic ;
Sync_Detected_Qut : out std_logic ;
Command_Data_Flag : out std_logic ;
Load_Count er _Qut : out std_logic

)
end conponent ;

conponent DATCLK

port (Reset_BIU cin std_logic ;
Transm t_Data in std_logic ;
Byte_C ock_In cin std_logic ;

Count _Val ue_Qut : out std_l ogic_vector (1 downto 0)
end conponent ;

conponent PRMCON

port (
Bl U OR_ RMJ in std_logic ;
Reset _BlI U in std_logic
Sync_Det ect ed in std_logic ;
Start_Cycle in std_logic ;
BIU ID in std_l ogic_vector (Data_Length downto 0) ;
Byte_Cd ock_In in std_logic ;
Start_Transm t . out std_logic ;
Start _Recei eve ©out std_logic
Status_Data ;. out std_logic ;
Start _Comrand © out std_logic ;
MUX_Sel ect ;. out std_l ogic_vector (Data_Length downto 0) ;
ROM Dat a in std_l ogic_vector (ROMWDTH - 1 downto 0) ;
ROM _Read_Bar ©out std_Logic ; -- :='0" ; ~-- active low
ROM Wi te_Bar ;. out std_Logic ; -- :="'0" ; ~-- active low
ROM_ADDRESS :out std_|l ogi c_vector (ROM ADDRESS LINES - 1 downto 0)
EPROM Error _Fl ag : out std_logic
end conponent ;
conponent RECEVR
port (Reset_BIU in std_logic ;
Start_Cycle in std_logic ;
Recei eve_Dat a cin std_logic ;
Byte_d ock_In in std_logic ;
Load_Conmmand_Reg : in std_logic ;
Start _Recei eve ;. out std_logic ;
Receive_Error_1 : out std_logic ;
Receive_Error_2 : out std_logic ;
Switch_Time_In in std_|l ogic_vector (2 domnto O) -- three bits for now

)

end conponent ;

55

conponent STATUS

port (

Bl U OR RWJ

Reset _BI U
Start_Cycle
BIUID

Start _Command
Start_Transm t :
Data_Status_Fl ag :
Dat a_Mode_Bi t :
FI FO Data_ln

Byte_C ock_In i
Status_Reg_In i

Transm t _Data 0
Load_Byt e_Qut)
Mbde_Bit _Qut 0
Data_Status_Qut : o

end conponent ;

n std_logic ;

n std_logic ;

n std_logic ;

n std_l ogi c_vector
n std_logic ;

n std_logic ;

n std_logic ;

n std_logic ;

n std_l ogi c_vector
n std_logic ;

n std_| ogi c_vector
ut std_| ogi

ut std_| ogi

c

ut std_logic ;
c -
ut std_l ogic

Dat a_Length downto O)

Dat a_Length downto 0) ;

Data_Length downto O)

Dat a_Length downto O)

work.S to_P (S_to_P_Behave) ;
work.P_to_S (P_to_S Behave)
wor k. PSCON (PSCON_Behave)

wor k. BYTCLK (BYTCLK_Behave)

S to_P use entity
P to_S use entity
PSCON use entity
BYTCLK use entity
HEADER use entit
DATCLK use entit
PRMCON use entit
RECEVR wuse entit
STATUS wuse entit

y wor k. HEADER (HEADER Behave)

y wor k. DATCLK (DATCLK_ Behave)

PRMCON_Behave) ;
) .
)

y wor k. PRMCON

(
y wor k. RECEVR (RECEVR Behave
(STATUS_Behave

y wor k. STATUS

(Data_Length_Plus_1 downto 0) ;
(Data_Length downto 0) ;
(Data_Length downto 0) ;
(Data_Length downto 0)
(Data_Length downto 0) ;

si gnal
si gnal
si gnal
si gnal
si gnal

si gnal
si gnal
si gnal

si gnal
si gnal
si gnal
si gnal

Qut put _Data_Buffer
Tenp_1_Buffer
Tenp_2_Buffer
Tenp_3_Buffer
Tenp_4_Buffer

Fi xed_Byte_d ock

Vari abl e_Byte_d ock :

Strobe

I nt ernal _Read_Bar
Internal _Wite_Bar
Wite_ A Byte Bar
Load_Byt e_Qut

-- Mahyar 3/27/ 1996
signal COUNT : std_logic_

si gnal
si gnal

si gnal

si gnal
si gnal
si gnal
si gnal
si gnal
si gnal

Status_Reg 0 : std_logic_vector (Data_Length downto 0) ; --
Status_Reg_1 : std_logic_vector (Data_Length downto 0) ; --

Transfer_Bar : std_|

Sync_Detected : st
Mode _Bit_In : st
Data_Mbde_Bit : st
Mode_Bit_Qut : st
Paral l el _Load : st
Lat ched_Sync : st

std_l ogi c_vector
std_| ogi c_vector
std_l ogi c_vector
std_| ogi c_vector
std_l ogi c_vector

std_logic ; --

std_logic ; --

std_logic ; --
std_logic ; --
std_logic ; --
std_logic ; --
std_logic ; --

vector (3 downto

logic ;

d_logic ;

d_logic ; ~-- Check for
d_logic; -- set to 'l
dlogic; -- set to
d_logic; ~-- for

d_ logic ;

0

)

; -- divide by 9 clock
; -- divide by 9 clock

-- Used to load p-to-s register

(others
(others

"1'" for command and '0' for
for conmmand, '0' for data

'"1" for comand, '0" for data

internal use

-- These signals are drived and set based on the instructions that
-- are part of the schedul e.

-- These signals need to be active

si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal

Start_Transm t
Start_Cycle :
Start _Recei eve :
Transmt_Data :
Recei eve_Dat a :
Data_Status_Fl ag :
Start _Comand :

std_logic ;
std_logic ;
std_logic ;
std_logic ;
std_logic ;
std_logic ; -- "1
std_logic ;

56

for

only for one Fixed_Byte_C ock period.

Data, '0'" for Status

= '
= '

data

0)

-- The follow ng signals are used to route the FI FO data and content of
-- status registers to the P_to_s conver nodul e.

-- 8/26/96

si gnal Data_Status : std_logic_vector (Data_Length downto 0) ;

-- This signal is used to |load the size of data packet into the
-- P_to_S_Count counter.

-- This signal needs to be active only for one Byte_Cl ock period.
signal Load_P_to_S Count : std_logic ;

-- Need to invert the Bit_C ock
signal Invert_Bit_Cock_In : std_logic ;

signal Load_Comand_Reg : std_logic ;
signal Command_Data_Flag : std_logic :="'0" ;

-- Need these counters to count the nunber of expected data bytes in the
-- data packets.

signal P_to_S Count : std_logic_vector (Data_Length downto 0) ;
signal S to_P_Count . std_logic_vector (Data_Length_Plus_1 downto 0)

-- This counter is used to load in the data packet header fromthe
-- Input FIFO It is |loaded with a value of 3 and counts down to O.
signal Read_Data_Count : std_logic_vector (1 downto 0)

-- data packet errors while reading and witing.
signal Read_FIFOError_1 : std_logic ;
signal Read_FIFO Error_2 : std_logic ;
-- signal Wite_ FIFO Error_1 : std_logic ;
-- signal Wite FIFO Error_2 : std_logic ;
si gnal Receive_Error_1 : std_logic ;
si gnal Receive_Error_2 : std_logic ;

si gnal EPROM Error_Flag : std_logic ;

-- Software clock to be used for checking the timng of the schedul ed events.

constant Timer_Length : integer := 2 * Data_Length_Plus_1 ; -- 16 bits
const ant Timer_Limt : integer := 65536 ; -- 2 ** 16
si gnal Timer : std_logic_vector (Timer_Length - 1 downto O) := (others =>"'0") ;
si gnal Timer_Error : std_logic ;
begin

UW0: BYTCLK port nmap (Reset_BIU, Start_Cycle, Sync_Detected, Bit_O ock_In,
Fi xed_Byte_d ock, Strobe, Variable_Byte_C ock)

Ul: S to P port map (Bit_Clock_In, Serial_Data_In, Qutput_Data_Buffer,
Mode Bit_In) ;

U2: P_to S port map (Invert_Bit_Clock_In, Data_Status, Mde Bit_Qut, Parallel_Load,
Serial _Data_Qut) ;

U3: PSCON port map (Load_P_to_S Count, P_to_S Count, |nput_FIFO Enpty_Bar,
Bit_Cock _In, Fixed Byte O ock, Read_FIFO Error_2,
Internal _Read_Bar) ;

U4: PRMCON port map (BIU OR RMJ, Reset_BIU, Sync_Detected, Start_Cycle, Bl U_ID,
Fi xed_Byte O ock, Start_Transmt, Receieve Data, Data_Status_Fl ag,
Start _Commrand, MJX_ Sel ect,
ROM Dat a, ROM Read_Bar, ROM Wite_Bar, ROM Address, EPROM Error_Flag)

U5: HEADER port map (BIU OR RMJ, Reset_BIU, BIUID, Mde_Bit_In, Qutput_Data_Buffer,
Vari abl e_Byte_C ock, Sync_Detected, Conmmrand_Dat a_Fl ag,
Load_Conmand_Reg) ;
U6: DATCLK port map (Reset_BIU, Transnmit_Data, Fixed_Byte_C ock, Read_Data_Count) ;
U7: RECEVR port map (Reset_BIU, Start_Cycle, Receieve_Data, Variable_Byte_d ock,
Load_Command_Reg, Start_Recei eve, Receive_Error_1,
Receive_Error_2, Switch_Tine_In) ;

U3: STATUS port map (BIU OR RMJ, Reset _BIU, Start_Cycle, BIU_ID, Start_Comrand,

57

Start_Transmt, Data_Status_Flag, Data_Mde_Bit, FIFO Data_ln,
Fi xed_Byte_C ock, Status_Reg_ 0, Transnit_Data, Load_Byte_Cut,
Mbode_Bit_Qut, Data_Status) ;

Byt e_ClLock_Qut <= Fixed_Byte_O ock ;

Invert _Bit_Cock_In <= not (Bit_d ock_In)

Paral l el _Load <= not (Internal _Read_Bar and Load_Byte_Qut) and Strobe ;
Lat ched_Sync_Qut <= Latched_Sync ;

Internal _Wite_Bar <= (not Variable Byte Clock) or Wite_A Byte_Bar

-- Note: INTRPT_CQut nust be high for one Byte_ O ock.

-- 8/28/96
INTRPT_Qut <= Start_Cycle ; -- Let the uP know a new cycle started

-- This process stores the content of the incomming bit streamfor future

-- use. It is essential to keep this data around for a few Byte_Cl ock
-- cycles. W need all the time we can get.
-- 8/2/96

-- The Tenp_1_Buffer has to be | oaded asynchronously to keep up with

-- possible changes and/or glitches in the incomming data bit stream

-- 8/15/96

Load_Tenp_Buffer : process (Variable_Byte O ock, CQutput_Data Buffer,
Sync_Detected)

begi n
if Rising_Edge (Sync_Detected) then -- async | oad
Tenp_1_Buffer <= Qutput_Data_Buffer (Data_Length_Plus_1 downto 1) ;
elsif (Sync_Detected ='0") then -- a MJST.
if Rising_Edge (Variable_Byte Clock) then
Tenp_1_Buffer <= Qutput_Data_Buffer (Data_Length downto 0)
Tenp_2_Buffer <= Tenp_1_Buffer ;
Tenp_3_Buffer <= Tenp_2_Buffer
Tenp_4_Buffer <= Tenp_3_Buffer ;

end if ;
end if

end process ;

-- This process |latches the "Sync_Detected" signal to be used by the
-- "Check_I D' state machine. The signal is latched using the negative
-- edge of the bit clock to avoid the timng problemthat otherw se

-- may occure.

Latch_Sync_Detected : process

begin
wait until Falling_Edge (Bit_Cock In) ;
Lat ched_Sync <= Sync_Det ected ;

end process ;

-- This process deci phers the incomm ng address bits and activates one of
-- the selected ports used in this nodule.

Check_More_Addresses : process (Chip_Sel ect _Bar, ADDRESS)
begin
Transfer_Bar <= '"1' ;
if (ADDRESS = PORT_ADDRESS 3) and (Chip_Select_Bar = '0") then
-- Transfering data fromthe FIFOIn to the FIFO _Qut
Transfer_Bar <= '0" ;
end if ;

end process ;

58

Wite_FIFO Qut : process -- (Internal _Wite_Bar, Input_Data_Buffer)
begi n

wait until Falling_edge (Internal _Wite_Bar)

FI FO Data_Qut <= Tenp_4_Buffer

end process ;

-- The initialization of the FIFO signals are not necessary here at this
-- time. But after inplenmenting the global BlU reset in the hardware,
-- this process will make nore sense. For now, however, this redundancy
-- here doesn't have any sideeffects.
-- Mahyar 4/1/1996
Reset _FIFO Control s: process (Reset_BIU, |nternal_Read_Bar,
Internal _Wite_Bar)
begin
if (Reset_BIlU="0") then
I nput _FI FO_Read_Bar <= Internal _Read_Bar
Qutput _FIFO Wite_Bar <= Internal _Wite_Bar ;
else -- tine to reset the system
| nput _FI FO_Read_Bar <='1" ;
Qutput _FIFO Wite_Bar <= "1" ;
end if ;

end process ;

-- The next two processes work together to define the bi-deirectional bus
uP_Read_XC4000_Status : process (Data_Read_Bar, Status_Reg 0)
begi n
if (Data_Read_Bar = '0") then
FI FO Data_I n_Qut <= Status_Reg_O ;

el se
FIFO Data_ | n_Qut <= "ZZ777777" ;
end if ;

end process ;

uP_Wite_ XC4000_Status : process -- (Data Wite_Bar, Status_Reg_1)
begin

wait until Rising_edge (Data_Wite_Bar) ;

Status_Reg_1 <= FIFO Data_In_CQut ;

end process ;

-- Note: Load_P_to_S Count need be active, i.e., high, for only a short
-- time of one Bit_C ock_Period.
-- 8/7/96
Read_Dat a_Header : process --(Fixed_Byte_C ock, Read_Data_Count, FIFO Data_In,
-- Data_Mde_Bit, P_to_S Count, Load_P_to_S Count)
begin
wait until Rising_Edge (Fixed_Byte_Clock) ; -- ==> setup time is half Fixed_Byte_d ock
Read_FI FO Error_1 <= '0" ;
Data_Mdde Bit <='0" ; -- set to 'l for command, '0" for data
Load_P_to_S Count <= "'0" ;

if (Transmit_Data = '1") then

P _to_S Count <= "00000011" ; -- read the first three header bytes.
Load_P_to_S Count <= "1', '0' after Bit_Cl ock_Period ;
Data_Mde Bit <='1" ; -- set to 'l for comand, '0'" for data
el se
if (Read_Data_Count = "11") then
if (FIFOData_In = "11111111") then -- send out a sync-pattern
Data_Mdde Bit <='0" ; -- set to'1l for comand, '0'" for data
else -- Error in data packet format
P _to_S Count <= "00000000" ; -- stop reading fromthe FIFO
Load_P_to_S Count <= "1', '0' after Bit_Cl ock_Period ;
Read FIFO Error_1 <='1" ; -- Raise the error flag.
end if ;

59

elsif (Read_Data_Count = "10") then
if (BBUORRW ="'1") then -- am| BIU?
if (FIFO Data_In (Data_Length) ="'1") then
-- It is acomand and it is an error
-- in data packet format and, thus, should be reported.

P_to_S Count <= "00000000" ; -- stop reading fromthe FIFO
Load_P_to_S Count <= "1', '0' after Bit_Cl ock_Period ;
Read_FIFO Error_1 <= '1" ; -- Raise the error flag.
end if
end if ;

elsif (Read_Data_Count = "01") then
P to_S Count <= FIFO Data_In ; -- Nowload the actual data count to be sent out.
Load_P to_ S Count <= "1', '0' after Bit_Cl ock_Period ;

else -- reset all.
Load_P_to_S Count <= "'0" ;
P_to_S Count <= "00000000" ; -- initialize it to zeros.
end if ;
end if

end process ;

-- This process initiates witing of the inconm ng data packet to the

-- output FIFO after detecting a synch-pattern.

-- It keeps witing the incommng data bytes to the FIFO until the

-- S to_P_Count reaches zero. The assunption is that there are as nmany

-- as S to_P_Count CONSECUTI VE data bytes conming over the serial input

-- line.

-- 8/1/96

Wite_Qut_FIFO Process : process (Reset_BIU, Start_Receieve, Variable_Byte_d ock,
S to_P Count, Wite_A Byte_Bar)

variable TEMP : integer := 0 ;

begi n
if (Reset_BIU="0") then

if Rising_edge (Start_Receieve) then
Synopsys vs Cadence

S to_P Count <= Tenp_1_Buffer + 3 ; -- 2 to flush the Tenp_i_Buffer's
TEMP : = To_integer (Tenp_1_Buffer) ;
TEMP : = TEMP + 3 ;
S to_P _Count <= To_StdLogi cVector (TEMP, 9) ;
end if

if Falling_Edge (Variable_Byte_Clock) then

Synopsys vs Cadence
TEMP := To_integer (S to_P _Count) ;
TEMP : = CONV_SIGNED (S to_P_Count)

Wite_ A Byte Bar <= "'1'
Start_Cycle <= '0" ;

if (Command_Data_Flag = '0") then -- it is a count of data bytes
if (TEMP > 0) then
Wite A Byte Bar <= '0" ;
TEMP := TEMP - 1 ;

Synopsys vs Cadence
S to_P _Count <= To_StdLogi cVector (TEMP, 9) ;
S to_P Count <= CONV_STD LOG C VECTOR (TEMP, 9) ;

end if ;
else -- it is a command! ?! ?!?
-- Take the appropriate actions here and then reset the command/ counter
-- register to zero to indicate end of operation.
Start_Cycle <= '1" ; -- restart the schedule and the Bl U
S to_P Count <= "000000000" ;

end if ;
end if ;

60

else -- time to reset the system
Start_Cycle <= '0
S to_P_Count <= " 000000000
Wite_ A Byte Bar <= '1' ;

end if ;
end process ;

-- This process stores the type of errors encountered in their designated

-- bit positions.

-- 8/2/96

Regi ster_Errors : process (Reset_BlIU Read_FIFO Error_1, Read_FIFO Error_2,
Recei ve_Error_1, Receive_Error_2, EPROM Error_Fl ag)

begi n
if (Reset_BIU="1") then -- time to reset.
Status_Reg_0 <= "00000000"
el se

if (Read_FIFO Error_1 ="'1") then
Status_Reg 0 (0) <="'1" ;

elsif (Read_FIFO Error_2 ="'1") then
Status_Reg 0 (1) <="'1" ;

elsif (Receive_Error_1 ="1") then
Status_Reg 0 (2) <="'1" ;

elsif (Receive_Error_2 ="1") then
Status_Reg 0 (3) <="'1" ;

el sif (EPROM Error Flag '1') then
Status_Reg 0 (4) <= ;

end if
end if ;

end process ;

-- This process handels the software tiner.

-- The Tiner is reset whenever BlU is reset.

-- The Tinmer is reset whenever Start_Cycle is set.
-- 8/20/96

Timer_Controller : process (Fixed_Byte Cock, Reset_BIU, Start_Cycle)
variable TEMP : integer := 0 ;

begin
-- Synopsys vs Cadence
TEMP := To_integer (Tiner) ;
-- TEMP : = CONV_SIGNED (Tiner)

if (Reset_BIU="0") and (Start_Cycle ='0") then
if Rising_Edge (Fixed_Byte Cock) then

Timer_Error <='0" ;

if (TEMP >= Timer_Limt) then
-- The schedule cycle is too large for this Timer.
Timer_Error <='1" ;
el se
TEMP := TEMP + 1 ;
end if ;
end if ;

else -- tine to reset the system
Ti mer Error <='0" ;
TEMP := 0 ;

end if ;

-- Synopsys vs Cadence
Ti mer <= To_StdLogi cVector (TEMP, Timer_Length) ;

61

Timer <= CONV_STD LOG C VECTOR (TEMP, Timer_Length) ;

end process ;

Fil e Nane:
Host Machi ne:

Tar get Machi ne:

Envi r onnent

Organi zati on:
Proj ect :

Aut hor :
Creation Date:

S TO P_E. VHD
GATEWAY 486/ 33 (1 BM AT d one)

GATEWAY 486/ 33 (I BM AT d one)

Model Technol ogy VHDL Sinul ation for Wndows (Ver 4.3f)
DOS Version 6.2

NASA- LaRC

Fly By Light - Power By Wre (FBL-PBW

Mahyar R Mal ekpour

05/ 20/ 96

-- Nane/ Nunber :

-- XC4000
-- Abstract:

(entity)

-- This file contains the entity declaration for the serial to parallel

-- conver si on process.
-- SI GNAL DEFI NI TION :
-- Acronyns/ Abbrevi ati ons:

-- FBL/ PBW
-- BlU - Bus Interface Unit

Dependenci es:

-- | EEE. STD_LOGQ C 1164

G obal njects:

Excepti ons:

Machi ne/ Conpi | er Dependenci es:
Revi si ons:

Modi fied on: 6/3/96

-- by: Mahyar Mal ekpour
library | EEE ;

use | EEE. std_l ogic_1164.all ;
use WORK. CNSTNT_P. al |

entity STOP is

Host Nachi ne:

Tar get Machi ne:

Envi r onnment

Or gani zati on:

PORT (
Bit_Cock_In in std_logic ;
Serial _Data_ln in std_logic ;
Par al | el _Dat a_Qut ;. out std_l ogic_vector ((Data_Length + 1) downto 0)
Mode_Bit _Qut : out std_logic
)
end S TOP ;
File Nanme S TO P_A. VHD

GATEWAY 486/ 33 (1 BM AT d one)

GATEWAY 486/ 33 (|1 BM AT Cl one)

Model Technol ogy VHDL Sinmul ation for Wndows (Ver 4. 3f)
DCS Version 6.2

NASA- LaRC

62

-- Project: Fly By Light - Power By Wre (FBL-PBW
-- Aut hor: Mahyar R Mal ekpour
-- Creation Date: 05/ 20/ 96

-- Name/ Nunber :

-- S TO P (architecture)

-- Abstract:

-- This file contains the architecture for the serial to parallel conversion
-- process.

-- S| GNAL DEFI NI TI ON :

-- Acronyns/ Abbrevi ati ons:
-- BIU - Bus Interface Unit

-- Dependenci es:
-- | EEE. STD_LOGQ C_1164

-- G obal Objects:

-- Exceptions:

-- Machi ne/ Conpi | er Dependenci es:
-- Revi sions:

-- Modi fied on: 6/3/96
-- by: Mahyar Mal ekpour

library | EEE ;
use | EEE. std_|l ogi c_1164.all ;

architecture S TO P Behave of S TOP is

conponent USLR

GENERI C (Gen_Data_Length : Natural := Data_Length + 1) ;
PORT (
Bit_Cock_In in std_logic ;
Paral l el _Data_ln in std_l ogi c_vector (Gen_Data_Length downto 0) ;
Par al | el _Dat a_Qut ©out std_l ogi c_vector (Gen_Data_Length downto 0)
Load_Paral | el in std_logic ;
Mode _Bit_In in std_logic ;
Serial _Data_ln cin std_logic ;
Serial _Data_Qut ;. out std_logic
)

end conponent ;

for all : USLR use entity work. USLR (USLR Behave)
signal GND 1 : std_logic_vector (Data_Length + 1 downto 0) := "000000000" ;
signal GND 2 : std_logic :="'0" ;

begin

-- This process sanples the incomming serail data bits using the falling
-- edge of the bit clock and stores themin the Qutput_Data Buffer.

-- Note: The first bit is assuned to be the Mbde_Bit and the next eight
-- bits the data byte with the M5 bit comming in first.

UW0: USLR port map (Bit_Cock_In, GND 1, Parallel_Data CQut, G\ND 2, G\D 2,
Serial _Data_In, Mde Bit_Qut) ;

63

-- File Nare: USLR_E. VHD

-- Host Machi ne: GATEWAY 486/ 33 (1 BM AT Cl one)

-- Target Machine: GATEWAY 486/33 (|1 BM AT Cl one)

-- Environnent : Mbdel Technol ogy VHDL Sinmulation for Wndows (Ver 4. 3f)
-- DCS Version 6.2

-- Organi zation: NASA- LaRC

-- Project: Fly By Light - Power By Wre (FBL-PBW
-- Aut hor: Mahyar R Mal ekpour

-- Creation Date: 05/ 21/ 96

-- Name/ Nunber :

-- SHFREG (entity)

-- Abstract:

-- This file contains the entity declaration for the universal shift left

-- register with parallel in and parallel

-- out functionality. However,
-- conver si on process.

-- SI GNAL DEFI NI TION :

-- Acronyns/ Abbrevi ati ons:

-- FBL/ PBW

-- BIU - Bus Interface Unit

-- Dependenci es:
-- | EEE. STD_LOGQ C 1164

-- dobal Objects:

-- Exceptions:

out as well as serail in and serial

it only shifts left one bit at a tine.

-- Machi ne/ Conpi | er Dependenci es:

-- Revi sions:

-- Modi fied on: 6/3/96

-- by: Mahyar Mal ekpour
-- Introduced the generic paraneter "Gen_Data_Length" to nake this entitiy
-- nore versetile for future use in other nodules. The default for this

-- paraneter is the gl obal constant

library | EEE ;
use | EEE. std_l ogic_1164.all ;
use WORK. CNSTNT_P. al |

entity USLR is
GENERI C (Gen_Data_Length :
PORT (
Bit_C ock_In

Paral l el _Data_In
Par al | el _Dat a_Qut
Load_Paral | el

Mode_Bit_In
Serial _Data_ln
Seri al _Dat a_Qut

"Data_Length".
Natural := Data_Length)
in std_logic ;
in std_|l ogi c_vector (Gen_Data_Length downto 0)
out std_l ogic_vector (Gen_Data_Length downto 0) ;
in std_logic ;
in std_logic ;
in std_logic ;
out std_logic

64

-- File Nare: USLR_A. VHD

-- Host Machi ne: GATEWAY 486/ 33 (1 BM AT Cl one)

-- Target Machine: GATEWAY 486/33 (|1 BM AT Cl one)

-- Environment : Model Technol ogy VHDL Sinul ation for Wndows (Ver 4.3f)
-- DCS Version 6.2

-- Organi zation: NASA- LaRC

-- Project: Fly By Light - Power By Wre (FBL-PBW

-- Aut hor: Mahyar R Mal ekpour

-- Creation Date: 05/ 21/ 96

-- Name/ Nunber :

-- USLR (architecture)

-- Abstract:

-- This file contains the entity declaration for the universal shift |left
-- register with parallel in and parallel out as well as serail in and serial

-- out functionality. However, it only shifts left one bit at a tine.
-- S| GNAL DEFI NI TI ON :

-- Acronyns/ Abbrevi ati ons:
-- BlU - Bus Interface Unit

- - Dependenci es:
-- | EEE. STD_LOGQ C_1164

-- G obal Objects:

-- Exceptions:

-- Machi ne/ Conpi | er Dependenci es:
-- Revi sions:

-- Modi fied on: 6/3/96

-- by: Mahyar Mal ekpour

-- Introduced the generic paraneter "Gen_Data_Length" to make this entitiy
-- nore versetile for future use in other nodules. The default for this
-- paraneter is the global constant "Data_Length".

library | EEE ;

use | EEE. std_l ogic_1164.all ;
--use WORK. CNSTNT_P. al |

--use ieee.std_logic_arith.all ;

architecture USLR Behave of USLR is

signal Input_Data Buffer : std_logic_vector (Gen_Data_Length downto 0)
signal Mdde Bit : std_logic ;

begin

Paral |l el _Data_Qut <= I nput_Data_Buffer ;
Serial _Data_Qut <= Mode_Bit

-- This process can load in parallel data and serializes the data byte in
-- the Input_Data_Buffer using the rising edge of the bit clock and sends
-- themout one bit at a tinme at the rising edge.
-- This process can also load in serial data bits and send themout in
-- parallel.
Paral l el _To_Serial _To_Parallel : process

variable Tenp_Qut : std_l ogic_vector (Gen_Data_Length downto 0) ;

begin
wait until Rising_Edge (Bit_Cock_In) ;

if (Load_Parallel ="'1") then
Input _Data_Buffer <= Parallel_Data_In ;

65

Mode_Bit <= Mbde Bit_In ;

el se

-- Convert it to serial bits and send them out,

-- and load in serial bhit.

Tenp_Qut := I nput_Data_Buffer

Mode_Bit <= Input_Data Buffer (Gen_Data_Length) ; -- MSB

for I in Gen_Data_Length downto 1 | oop
Temp_Qut (I) :=Temp_Qut (I - 1) ;

end | oop ;

Tenmp_Qut (0) := Serial_Data_In ;

| nput _Dat a_Buffer <= Tenp_Qut ;

end if ;
end process ;

-- File Narme: P_TO S E. VHD
-- Host Machi ne: GATEWAY 486/ 33
-- Target Machine: GATEWAY 486/ 33

(1 BM AT d one)
(1 BM AT Cl one)

-- Environnent : Model Technol ogy VHDL Sinmul ation for Wndows (Ver 4. 3f)

-- DCS Version 6.2
-- Organi zation: NASA- LaRC

-- Project: Fl'y By Light -
-- Aut hor: Mahyar R Mal ek
-- Creation Date: 05/ 20/ 96

-- Name/ Nunber :

-- P_TO S

-- Abstract:

Power By Wre (FBL-PBW
pour

(entity)

-- This file contains the entity declaration for the serial to parallel

-- conver si on process.

-- SI GNAL DEFI NI TI ON :

-- Acronyns/ Abbrevi ati ons:

-- FBL/ PBW

-- BlU - Bus Interface Unit

- - Dependenci es:
-- | EEE. STD_LOG C_1164

-- dobal Objects:

-- Exceptions:

-- Machi ne/ Conpi | er Dependenci es:
-- Revisions:

-- Modi fied on: 2?2/ ??/96

-- by: Mahyar Mal ekpour

library | EEE ;
use | EEE. std_l ogic_1164.all ;
use WORK. CNSTNT_P. al | ;

entity P TOS is
PORT (
Bit_C ock_In cin

Paral |l el _Data_In in

std_logic ;

std_|l ogi c_vector (Data_Length downto 0)

66

Technol ogy VHDL Sinul ati on for Wndows (Ver 4.3f)

(architecture)

to serial conversion

Mode _Bit_In in std_logic ;
Load_Paral | el in std_logic ;
Serial _Data_Qut out std_l ogic
)
end P_TO S ;
-- File Name P_TO S A VHD
-- Host Machi ne: GATEWAY 486/ 33 (I BM AT d one)
-- Target Machine: GATEWAY 486/33 (|1 BM AT Cl one)
-- Environmnent Model
-- DCS Version 6.2
-- Organi zation: NASA- LaRC
-- Project: Fl'y By Light - Power By Wre (FBL-PBW
-- Aut hor: Mahyar R Mal ekpour
-- Creation Date: 05/ 20/ 96
-- Name/ Nunber :
-- P_TO S
-- Abstract:
-- This file contains the architecture for the parallel
-- process.
-- S| GNAL DEFI NI TI ON :
-- Acronyns/ Abbrevi ati ons:
-- BIU - Bus Interface Unit
-- Dependenci es:
-- | EEE. STD_LOGQ C_1164
-- G obal Objects:
-- Exceptions:
-- Machi ne/ Conpi | er Dependenci es:
-- Revi sions:
-- Modi fied on: ??/??/96
-- by: Mahyar Mal ekpour
library | EEE ;

use | EEE. std_l ogic_1164.all ;
architecture P_TO S Behave of P TOS is

conponent USLR

PORT (
Bit_C ock_In in
Paral l el _Data_In in
Par al | el _Dat a_Qut out
Load_Paral | el in
Mode_Bit_In in
Serial _Data_ln in
Seri al _Dat a_Qut out

)

end conponent ;

std_| ogi

std_| ogi
std_| ogi
std_| ogi

std_| ogi
std_| ogi
std_| ogi

c_vector (Data_Length downto 0)
c_vector (Data_Length downto 0) ;
c

for all

USLR use entity work. USLR (USLR Behave) ;

67

signal G\ND_1 : std_l ogic_vector (Data Length downto 0) ; -- := "00000000"
signal GND_ 2 : std_logic :="'0'
begi n

This process serializes the data byte in the | nput_Data_Buffer using
the rising edge of the bit clock and sends themout one bit at a tinme

-- at the rising edge.

-- Note:

A start data bit, i.e., '0",

is send out followed by the data

-- starting with the MS bit.

-- This process continneously sends out a streamof bits.
is enpty,

-- buffer

U0: USLR port map (Bit_d ock_In,

Host
Tar get
Envi r onnent

Machi ne:

Organi zati on:
Proj ect:

Aut hor :
Creation Date:

Name/ Nunber :
PSCON

Abstract:

Synt hesi abl e Controller for Parallel

Machi ne:

Wen t he

it sends out '0's.
Paral l el _Data_ln, GND_1, Load_Parallel,
Mbde Bit_In, GND 2, Serial Data Qut) ;
PSCON_E. VHD

Mbdel Technol ogy VHDL Sinmulation for Wndows (Ver 4. 3f)
DCS Version 6.2

NASA- LaRC
Fl'y By Light - Power By Wre (FBL-PBW
Jerry H. Tucker, Mahyar Mal ekpour
05/ 20/ 96
(entity)
to serial convertor.

SI GNAL DEFI NI TI ON :

Acr onyns/ Abbr evi ati ons:

FBL/ PBW
Bl U -

Dependenci es:

Bus Interface Unit

| EEE. STD LOAd C 1164

d obal

Exceptions:

Machi ne/ Conpi | er

Revi si ons:

Modi fi ed on:
by:

hj ect s:

Dependenci es:

6/ 12/ 96
Mahyar Mal ekpour

1. Added this docunent tenplate and,

2. changed sone signal

Modi fi ed on:
by:

names so that they are nore descriptive:

Load_P_TO S Count
FI FO_Enpty_Bar
Bi t _d ock

6/ 18/ 96

Mahyar Mal ekpour

Added Count_Val ue so that the S TO P _Count can be initialized to the

proper val ue.
FI FO_I n.

Modi fi ed on:
by:

This counter is decrenmented after every read fromthe

8/ 20/ 96

Mahyar Mal ekpour

68

-- Added Read_FI FO Error to report errors while reading data bytes fromthe
-- FIFQ

library | EEE ;
use | EEE. std Ioglc 1164. al |
use WORK. CNSTNT_P. al | ;

Entity PSCON is

port (
Load_P_TO S Count : in STD LOG C
Count _Val ue cin std_l ogi c_vector (Data_Length downto 0) ;
FI FO_Enpty_Bar in STD LOG C
Bi t_d ock in STD LOG C
BYTE_CLOCK cin STD LOG C ;
Read_FI FO Error ;. out std_logic ;
FI FO_RD _bar :out STD_LOG C)
end PSCON ;
-- File Nane: PSCON_A. VHD
-- Host Machi ne: GATEWAY 486/ 33 (1 BM AT d one)
-- Target Machi ne:
-- Environnent : Model Technol ogy VHDL Sinul ation for Wndows (Ver 4.3f)
-- DOS Version 6.2
-- Organi zation: NASA- LaRC
-- Project: Fly By Light - Power By Wre (FBL-PBW
-- Author: Jerry H Tucker, Mahyar Mal ekpour
-- Creation Date: 05/ 20/ 96
-- Name/ Nunber :
-- PSCON (architrecture)
-- Abstract:

-- Synt hesi abl e Controller for Parallel to serial convertor.
-- SI GNAL DEFI NI TI ON :

-- Acronyns/ Abbrevi ati ons:

-- FBL/ PBW

-- BlU - Bus Interface Unit

- - Dependenci es:
-- | EEE. STD_LOG C_1164

-- dobal Objects:

-- Exceptions:

-- Machi ne/ Conpi | er Dependenci es:
-- Revisions:

-- Modi fied on: 6/12/96

-- by: Mahyar Mal ekpour

-- 1. Added this docunent tenplate and,
-- 2. changed sone signal nanes so that they are nore descriptive:

-- Add Nane New Nane

S Load_P_TO S_Count
-- EMPTY FI FO_Enpty_Bar

-- CLK Bit _Cd ock

-- SYN PSCON_Behave

-- 3. Chnaged the logic to reflect the proper logic of FIFO Enpty Bar.
-- FIFO Enpty_Bar = '1'" ==> FIFOis not enpty.

-- Modi fied on: 6/18/96

-- by: Mahyar Mal ekpour
-- Added a new process to handel the P_TO S Count counter.

69

-- Modi fied on: 7/31/96
-- by: Mahyar Mal ekpour
-- Synch'ed the state machine with the Byte_Cl ock via Read_A Byte signal.

-- Modi fied on: 8/20/96

-- by: Mahyar Mal ekpour

-- Cenerating the FIFOread error if the FIFOis enpty while reading data.
-- | raise the error flag.

library | EEE ;

use WORK. CNSTNT_P. al | ;

use ieee.std_logic_arith.all

use | EEE. std_|l ogi c_1164. al |

--use ieee.std_| ogi c_signed. CONV_| NTEGER ;
use work.nmy_std_logic_arith.all ;

architecture PSCON_Behave of PSCON is

signal P_TO S Count : std_logic_vector (Data_Length downto 0) := (others => '0")
si gnal Read_A Byte : std_logic :="1" ;
begi n

FI FO_RD bar <= BYTE_CLOCK or Read_A Byte ;

Read_FI FO : process (FIFO Empty_Bar, P_TO S Count)
begi n
-- added the followi ng statement to synch the state machine with
-- the Byte_C ock, otherwi se the FIFO RD bar will not be active for
-- enough tinme.
-- 7/31/96

if (P_TO_S_Count /= "00000000") then
if (FIFO Enpty _Bar = '1'") then -- If there is data
Read_A Byte <= '0' after Delay_5_ns ;
Read_FI FO Error <= '0' after Delay_5_ns ;
else -- FIFOis enpty
Read_A Byte <= '1' after Delay_5_ns ;
Read FIFO Error <= '1' after Delay 5 ns ;
end if
el se
Read_A Byte <= '1' after Delay_5_ns ;
Read_FI FO Error <= '0' after Delay_5_ns ;
end if ;

end process ;

-- This process |oads the counter upon Load_P_TO S Count active.

-- This process decrements the counter until it reaches zero.
Counter_Controller : process (FIFO Enpty_Bar, Load_P_TO S_ Oount Byte_C ock)
variable TEMP : integer ; --natural range 0 to 255 := 0 ;
begin
if (Load_P_TO S Count ="'1") then
P_TO S Count <= Count_Val ue ;
end if ;

if Rising_Edge (Byte_Cock) then
-- Synopsys vs Cadence
TEWP : = To _Integer (P_TO S Count) ;

-- TENP = CON_INTEGER (P_TO S Count) ;
if (TEMP > 0) then
TEMP := TEMP - 1 ;
end if ;

-- Synopsys vs Cadence
P_TO S Count <= To_StdLogi cVector (TEMP, 8) ;

70

-- P_TO S Count <= CONV_STD LOGd C VECTCOR (TEMP, 8) ;
end if ;

end process ;

-- File Nane: BYTCLK_E. VHD

-- Host Machi ne: GATEWAY 486/ 33 (|1 BM AT Cl one)

-- Target Machine: GATEWAY 486/ 33 (I BM AT d one)

-- Environnent : Mbdel Technol ogy VHDL Sinul ation for Wndows (Ver 4.3f)
-- DOS Version 6.2

-- Organi zation: NASA- LaRC

-- Project: Fly By Light - Power By Wre (FBL-PBW

-- Author: Mahyar R Mal ekpour

-- Creation Date: 7/ 26/ 1996

-- Nane/ Nunber :

-- BYTCLK (architecture)

-- Abstract:

-- This file contains the entity for the Byte C ock generator.
-- SI GNAL DEFI NI TI ON :

-- Acronyns/ Abbrevi ati ons:

- - Dependenci es:

-- | EEE. STD_LOGQ C_1164

-- G obal Objects:

-- Exceptions:

-- Machi ne/ Conpi | er Dependenci es:
-- Revisions:

-- Modi fied on: 8/15/96

-- by: Mahyar Mal ekpour
-- Separating the Byte_Cl ock to handel the Sync_Detect ed.

library | EEE ;
use ieee.std_logic_1164.all;

entity BYTCLK is

port (Reset_BIU in std_logic ;
Start_Cycle in std_logic ;
Sync_Det ect ed in std_logic ;
Bit_C ock_In in std_logic ;
Fi xed_Byte_d ock_CQut . out std_logic ;
St robe_Qut :out std_logic ;
Vari abl e_Byte_Cl ock_Qut : out std_l ogic
)
end BYTCLK ;
-- File Nare: BYTCLK_A. VHD
-- Host Machi ne: GATEWAY 486/ 33 (|1 BM AT Cl one)
-- Target Machine: GATEWAY 486/ 33 (I BM AT d one)
-- Environnent : Model Technol ogy VHDL Sinul ation for Wndows (Ver 4.3f)
-- DOS Version 6.2
-- Organi zation: NASA- LaRC
-- Project: Fly By Light - Power By Wre (FBL-PBW
-- Author: Mahyar R Mal ekpour

-- Creation Date: 7/ 26/ 1996

71

-- Name/ Nurber :
-- BYTCLK (architecture)

-- Abstract:
-- This file contains the architecture for the Byte O ock generator.

-- S| GNAL DEFI NI TI ON :
-- Acronymns/ Abbrevi ati ons:

- - Dependenci es:
-- | EEE. STD_LOGQ C_1164

-- G obal Objects:

-- Exceptions:

-- Machi ne/ Conpi | er Dependenci es:
-- Revisions:

-- Modi fied on: 8/1/96

-- by: Mahyar Mal ekpour

-- Modified the shape of the Byte_C ock and N bble_O ock clocks while
-- maitaining the relative position of the Strobe clock.

-- Modi fied on: 8/15/96
-- by: Mahyar Mal ekpour
-- Separating the Byte_C ock to handel the Sync_Detected.

library | EEE ;

use WORK. CNSTNT_P. al | ;

use ieee.std_logic_arith.all ;
use work.ny_std_logic_arith.all

architecture BYTCLK Behave of BYTCLK is

signal Fixed_Byte_C ock : std_logic ; -- :="1 ; -- divide by 9 clock

signal Variable Byte dock : std logic ; -- :="'1" ; -- divide by 9 clock

signal N bbl e_d ock : std_logic ; -- :="1 ; -- divide by 9 clock times 2, i
divide by 4 clock

signal Strobe : std_logic ; -- :="1 -- Used to load p-to-s register
begin

Fi xed_Byte_d ock_CQut <= Fi xed_Byte_C ock after Delay_7_ns ;
Variabl e_Byte_C ock_Qut <= Variable_Byte_Cl ock after Delay_7_ns ;
St robe_Qut <= Strobe after Delay_7_ns ;

-- This process builds a 4-bit counter that counts fromO to 8 This counter
-- is used to divied the incomng bit-clock by nine and assigns it to

-- N bble_d ock and Fi xed_Byte_dC ock.

-- The counter is reset whenever BlUis reset or when a sync patternis

-- detected.

-- This process divides the incomng bit-clock by nine and assigns it to

-- Fixed_Byte_Cock. Since nine is an odd nunber, the Fixed_Byte_ O ock

-- will be high for 4 bit-clocks and low for 5 bit-clock.

-- It is essential that the Fixed_Byte Cock to be | ow when Count is "0000".

Fi xed_C ock_Counter: process (Reset _BIU, Bit_Oock_In, Start_Cycle)
variable Count : natural range O to 15 := 0 ;

begin
if Rising_Edge (Bit_Clock_In) then
if (Reset_BIU="0") and (Start_Cycle ='0") then

72

. e.

Count := (Count + 1) nod 9 ;

elsif (Reset_BIlU="1") then -- Time to reset the systemand intialize the counter.
Count := 0 ;

elsif (Start_Cycle ='1") then -- Tinme to reset the systemand intialize the counter.
Count := 0 ;

end if ;

if (Count = 2) then
Ni bble_Cock <= '1'" ; -- not N bble_d ock ;

elsif (Count = 3) then
Strobe <= '1'" ; -- active before the rising edge of Fixed_Byte_ 0 ock

elsif (Count = 4) then
Fi xed_Byte_d ock <='1" ; -- not Fixed_Byte_C ock ;
Ni bble_Cock <= '0" ; -- not N bble_dock ;

Strobe <= "'0' ;
elsif (Count = 6) then

Ni bble_C ock <= '1'" ; -- not N bble_d ock ;
elsif (Count = 0) then

Fi xed_Byte_d ock <='0"

Ni bble_CO ock <= "'0" ;

Strobe <= "'0' ;
end if ;

end if ;
end process Fi xed_Cl ock_Counter ;

-- This process builds a 4-bit counter that counts fromO to 8 This

-- counter is used to divied the incomng bit-clock by nine and assigns

-- it to Variable_Byte_d ock.

-- The counter is reset whenever BlU is reset or when a sync pattern is

-- detected.

Variabl _Cl ock_Counter: process (Reset_BIU, Bit_Cock_In, Sync_Detected)
variable TEMP : natural range O to 15 := 0 ;

begi n
if Rising_Edge (Bit_Clock_In) then
if (Reset_BlU="0") and (Sync_Detected = '0') then
TEMP := (TEWP + 1) nod 9 ;

elsif (Reset_BIU="1") then -- Tine to reset the systemand intialize the counter.
TEMP := 0 ;

elsif (Sync_Detected = '1") then -- Tinme to reintialize the counter.
TEMP := 6 ;

end if

if (TEMP = 4) then

Vari abl e_Byte_d ock <= '1" ; -- not Variable_Byte d ock ;
elsif (TEMP = 0) then

Vari abl e_Byte_d ock <='0" ;
end if

end if

end process ;

-- File Nare: HEADER _E. VHD

-- Host Machi ne: GATEWAY 486/ 33 (|1 BM AT Cl one)

-- Target Machine: GATEWAY 486/ 33 (I BM AT d one)

-- Environnent : Model Technol ogy VHDL Sinul ation for Wndows (Ver 4.4j)
-- DCS Version 6.2

-- Organi zation: NASA- LaRC

-- Project: Fly By Light - Power By Wre (FBL-PBW

73

-- Author: Mahyar R Mal ekpour
-- Creation Date: 8/ 1/ 1996

-- Name/ Nunber :

-- HEADER (entity)

-- Abstract:

-- This nodul e exam nes the data packet header of the incomming data and
-- detects the sync-pattern. |t then checks the data for the packet Id and

-- conpares it against the local BIU_ID. If a match is detected, LOAD COUNTER

-- is asserted. Error falgs are rai sed when necessary.
-- S| GNAL DEFI NI TI ON :
-- Acronyns/ Abbrevi ati ons:

-- Dependenci es:
-- | EEE. STD_LOGQ C_1164

-- G obal Objects:

-- Exceptions:

-- Machi ne/ Conpi | er Dependenci es:
-- Revi sions:

-- Modi fied on: 8/7/96

-- by: Mahyar Mal ekpour
-- Added Reset_BIU and Conmand_Dat a_Fl ag signal s.

-- Command_Data_Flag is set high to indicate that the data packet is a conmand
-- and is set lowto indicate that it is a count of data bytes that need to be

-- routed to the output FIFO

-- Modi fied on: 8/9/96
-- by: Mahyar Mal ekpour

-- Modi fied on: 9/4/96
-- by: Mahyar Mal ekpour
-- Added BIU OR RWJ to this nodul e.

library | EEE ;
use ieee.std_logic_1164.all;
use WORK. CNSTNT_P. al |

entity HEADER is

port (
Bl U OR_ RMJ in std_logic ;
Reset _BlI U in std_logic ;
BIU ID in std_l ogic_vector (Data_Length downto 0) ;
Mode_Bit_In in std_logic ;
Data_In in std_|l ogic_vector (Data_Length_Plus_1 downto 0)
Byte_d ock_In in std_logic ;
Sync_Detected_Qut : out std_logic ;
Command_Data_Flag : out std_logic ;
Load_Count er _Qut ;. out std_logic
)

end HEADER ;

-- File Nane: HEADER_A. VHD

-- Host Machi ne: GATEWAY 486/ 33 (I BM AT d one)

-- Target Machine: GATEWAY 486/ 33 (I BM AT d one)

-- Environnent : Model Technol ogy VHDL Sinul ation for Wndows (Ver 4.4j)

-- DCS Version 6.2

-- Organi zation: NASA- LaRC

-- Project: Fly By Light - Power By Wre (FBL-PBW

-- Author: Mahyar R Mal ekpour

-- Creation Date: 8/ 1/ 1996

74

-- Name/ Number :
-- HEADER (architecture)

-- Abstract:
-- This file contains the architecture for the data packet header nodul e.

-- S| GNAL DEFI NI TI ON :
-- Acronymns/ Abbrevi ati ons:

- - Dependenci es:
-- | EEE. STD_LOGQ C_1164

-- G obal Objects:

-- Exceptions:

-- Machi ne/ Conpi | er Dependenci es:
-- Revisions:

-- Modi fied on: 8/1/96

-- Note: the Load_Counter_Qut signal nust be raised and used within a Bit_d ock
-- cycle. Thus, in worst case | used a delay of half Bit_Clock cycle, i.e.,

-- Delay_5_ns ;

-- Modi fied on: 8/20/96
-- Incorporated the Gobal _BIU IDin detecting packets for the nodul es.

-- Modi fied on: 9/4/96

-- Modi fied on: 9/16/96
-- Incorporated the status bit in detecting packets for the nodul es.

library | EEE ;
use WORK. CNSTNT_P. al |
use ieee.std_logic_arith.all ;

archi tecture HEADER Behave of HEADER is

si gnal Sync_Detected : std_logic ;
begin
Sync_Detected_Qut <= Sync_Detected after Delay_2_ns ;

-- This process checks the inconm ng data stream agai nst the uni que and
-- predefined pattern of synchronization; Sync_Pattern.

Check_Sync_Pattern : process (Reset_BIU, Data_In, Mde_Bit_In)

begin
Sync_Detected <= '0" ;

if (Reset_BIU="0") then
if (Data_ln = Sync_Pattern) and (Mdde_Bit_In ="'1") then
Sync_Detected <= '1' ;
end if ;
end if ;

end process ;

-- The counter is reset whenever BlU is reset.
-- The counter is set whenever Sync_Detected is set.
Two_Bit_Counter: process (Reset_BIU Sync_Detected, Byte_C ock_In,
Data_ln, BlU OR RWJ
variable TEMP : natural range 0 to 3 := 0 ;

75

begi n

if (Reset_BIU="0") and (Sync_Detected = '0') then

if Rising_Edge (Byte_Clock_In) then
Command_Data_Flag <= '0' ;

if (TEMWP = 1) then
-- BIU_IDs are only 5-bits long. The higher three bits are reserved.
if (Data_In (Data_Length - 4 downto 0) = BIU ID (Data_Length - 4 downto 0)) --
is it mne?

or (Data_In (Data_Length - 4 downto 0) = Gobal _BIU ID (Data_Length - 4 downto

0)) -- is it everyones?
or (Data_In (Data_Length - 1) ='1") -- is it status info?
or (BUORRW ="0") then -- | amRW
TEMP := TEMP + 1 ;
if (Data_Iln (Data_Length) ="'1") then -- it is a conmand
Command_Data_Flag <= '1' after Delay_5_ns ;
end if ;
else -- It is not mne, ignore it.
TEMP := 0 ;
end if ;

elsif (TEW = 2) then

Load_Counter_Qut <= '1" after Delay_5_ns ;
TEMP := 0 ;
elsif (TEMP = 0) then
Load_Counter_Qut <= '0' after Delay_5_ns ;
end if
end if ;
elsif (Sync_Detected = '1") then -- Time to reintialize the counter.

TEMP : =1 ;

Load_Counter_Qut <= '0Q" after Delay_5_ns ;

elsif (Reset_BIU="1'
TEMP := 0 ;
Load_Counter_Qut <= '0' ;
Command_Data_Flag <= '0'

) then -- Time to reset the systemand intialize the counter.

end if

end process ;

Fil e Nane: DATCLK_E. VHD
Host Machi ne: GATEWAY 486/ 33 (I BM AT d one)
Target Machi ne: GATEWAY 486/ 33 (I BM AT d one)

Envi r onnent

Or gani zati on:
Proj ect:

Aut hor :
Creation Date:

Nane/ Nunber :
DATCLK

Abstract:

Model Technol ogy VHDL Sinulation for Wndows (Ver 4. 3f)
DOS Version 6.2

NASA- LaRC

Fly By Light - Power By Wre (FBL-PBW

Mahyar R Mal ekpour

8/ 1/ 1996

(architecture)

This file contains the entity for the read data packet clock generator.
This counter is used to load in the data packet header fromthe

Input FIFO It

is loaded with a value of 3 and counts down to O.

S| GNAL DEFI NI TI ON :

Acr onyns/ Abbr evi ati ons:

Dependenci es:

76

-- | EEE. STD_LOG C 1164

-- G obal Objects:

-- Exceptions:

-- Machi ne/ Conpi | er Dependenci es:
-- Revisions:

-- Modi fied on: 2?2/ ??/96
-- by: Mahyar Mal ekpour

library | EEE ;
use ieee.std_l ogic_1164.all;

entity DATCLK is

port (Reset_BIU cin std_logic ;
Transm t _Data in std_logic ;
Byte_C ock_In cin std_logic ;
Count _Val ue_Qut : out std_l ogi c_vector (1 downto O)
)
end DATCLK ;
-- File Narme: DATCLK_A. VHD
-- Host Machi ne: GATEWAY 486/ 33 (I BM AT d one)
-- Target Machine: GATEWAY 486/33 (|1 BM AT Cl one)
-- Environnent : Model Technol ogy VHDL Sinmul ation for Wndows (Ver 4. 3f)
-- DCS Version 6.2
-- Organi zati on: NASA- LaRC
-- Project: Fly By Light - Power By Wre (FBL-PBW
-- Aut hor: Mahyar R Mal ekpour
-- Creation Date: 8/ 1/ 1996
-- Name/ Nunber :
-- DATCLK (architecture)
-- Abstract:

-- This file contains the architecture for the read data packet clock generator.

-- This counter is used to load in the data packet header fromthe

-- Input FIFO It is |loaded with a value of 3 and counts down to O.

-- 3 ==>read first byte, has to be FF

-- 2 ==> read second byte, is a BIU_ID

-- 1 ==>read third byte, is a command or a count of nunber of bytes to follow

-- this value has to loaded into the p_to_s_count counter/register.
-- 0 ==> noop.

-- SI GNAL DEFI NI TI ON :

-- Acronyns/ Abbrevi ati ons:

- - Dependenci es:
-- | EEE. STD_LOG C_1164

-- dobal Objects:

-- Exceptions:

-- Machi ne/ Conpi | er Dependenci es:
-- Revi sions:

-- Modi fied on: 8/1/96

library | EEE ;
use WORK. CNSTNT_P. al | ;

77

use ieee.std_logic_arith.all ;
use work. my_std_logic_arith.all

architecture DATCLK Behave of DATCLK is
begi n

-- The counter is reset whenever BlU is reset.
Two_Bit_Counter: process (Reset_BIU, Byte Clock_In) -- COUNT)
variable TEMP : natural range 0 to 3 := 0 ;

begi n
if (Reset_BIU="0") then

if Rising_Edge (Byte_Cdock_In) then
if (Transmt_Data = '1") then
TEMP : = 3 ;
el se
if (TEMP > 0) then
TEMP := TEMP - 1 ;
end if

end if
end if ;

else -- Time to reset the systemand intialize the counter.
TEMP := 0 ;
end if ;
-- Synopsys vs Cadence
-- Count _Val ue_Qut <= CONV_STD LOG C VECTOR (TEMP, 2) ;
Count _Val ue_Qut <= To_StdLogi cVector (TEMP, 2) after Delay_10_ns ;

end process ;

-- File Nane: PRMCON_E. VHD

-- Host Machi ne: GATEWAY 486/ 33 (I BM AT d one)

-- Target Machine: GATEWAY 486/ 33 (I BM AT d one)

-- Environnent : Model Technol ogy VHDL Sinmul ation for Wndows (Ver 4. 3f)
-- DCS Version 6.2

-- Organi zati on: NASA- LaRC

-- Project: Fly By Light - Power By Wre (FBL-PBW
-- Aut hor: Mahyar R Mal ekpour

-- Creation Date: 8/ 14/ 1996

-- Name/ Nunber :

-- PRMCON (entity)

-- Abstract:

-- This nodule is the EPROM RAM control | er and handel s fetchi ng of
-- instructions fromthe EPROM RAM

-- SI GNAL DEFI NI TI ON :
-- Acronyns/ Abbrevi ati ons:

- - Dependenci es:
-- | EEE. STD_LOd C 1164

-- dobal Objects:
-- Exceptions:
-- Machi ne/ Conpi | er Dependenci es:

-- Revisions:

78

-- Modi fied on: 8/29/96

-- by: Mahyar Mal ekpour

-- Added EPROM Error_Flag to this entity.
-- Added BIUORRMJ to this entity.

-- Modi fied on: 9/4/96
-- by: Mahyar Mal ekpour
-- Added MJUX Sel ect and Start_Command to this entity.

l'ibrary IEEE ;

use ieee.std Iogl c_1164.all;
use WORK. CNSTNT_P. al | ;

use WORK. EPROM P. al |

entity PRMCON is

port (
Bl U OR RMJ in std_logic
Reset _BI U in std_logic ;
Sync_Det ect ed in std_logic
Start_Cycle in std_logic ;
BIU ID in std_|l ogic_vector (Data_Length downto 0)
Byte_C ock_In in std_logic ;
Start_Transm t :out std_logic ;
Start _Recei eve ;. out std_logic ;
Status_Data :out std_logic
Start _Command ;. out std_logic ;
MUX_Sel ect :out std_|l ogi c_vector (Data_Length downto 0)
ROM Dat a cin std_|l ogic_vector (ROMWDTH - 1 downto 0)
ROM Read_Bar . out std_Logic ; -- :="'0" ; ~-- active low
ROM Wi te_Bar :out std_Logic ; -- :'0 ; -- active low
ROM_ADDRESS ;. out std_l ogic vector (ROM_ ADDRESS LINES - 1 downto 0) ;
EPROM Error_Fl ag : out std_logic
)

end PRMCON ;

-- File Nare: PRMCON_A. VHD

-- Host Machi ne: GATEWAY 486/ 33 (|1 BM AT Cl one)

-- Target Machine: GATEWAY 486/ 33 (I BM AT d one)

-- Environnent : Model Technol ogy VHDL Sinul ation for Wndows (Ver 4. 3f)

-- DOS Version 6.2

-- Organi zation: NASA- LaRC

-- Project: Fly By Light - Power By Wre (FBL-PBW

-- Author: Mahyar R Mal ekpour

-- Creation Date: 8/ 14/ 1996

-- Name/ Nunber:

-- PRMCON (architecture)

-- Abstract:

-- This file contains the architecture for the EPROM RAM control | er.
-- S| GNAL DEFI NI TI ON :
-- Acronyns/ Abbrevi ati ons:

- - Dependenci es:
-- | EEE. STD_LOGQ C_1164

-- dobal Objects:

-- Exceptions:

-- Machi ne/ Conpi | er Dependenci es:
-- Revi sions:

-- Modi fied on: 8/29/96

79

-- Modi fied on: 9/3/96
-- Distingushing between BlU and RMJ. Added the necesarry |ogic.

-- Modi fied on: 9/6/96

-- To send the incomm ng data out on the read-bus ASAP, | had to nodify the
-- code and add sonme new logic so that start_transmt signal is generated for
-- this case and at the appropriate tine.

library | EEE ;

use WORK. CNSTNT_P. al | ;

use WORK. EPROM P. al |

use ieee.std_logic_arith.all ;
use work.ny_std_logic_arith.all

architecture PRMCON Behave of PRMCON is

constant Delta Time_Length : integer := Data_Length_Plus_1 ; -- 8 bits
const ant Tinmer_Length : integer := (2 * Data_Length_Plus_1) ; -- 16 bits
si gnal Load_Counter_Bar : std_logic :="1" ;
si gnal Instruction_Buffer : std_logic_vector (Data_Length downto 0) := (others =>'0") ;
si gnal READ A Inst : std_logic :="1" ;
signal Internal _ROM READ Bar : std_logic :="'1" ;
si gnal Decode_Inst : std_logic :="1" ;
si gnal Pause_Fetch : std_logic :="'0" ;
si gnal Resume_Fetch : std_logic := "0
begin

I nternal _ROM READ Bar <= BYTE_CLOCK In or READ A Inst
ROM READ Bar <= | nternal _ROM READ Bar

-- This process |oads the EPROM instruction into a tenporary buffer for

-- future use.

Load_Instruction : process (Reset_BIU BIUORRMJ, Start_Cycle, ROM Data,
I nt er nal _ROM READ Bar)

begin
if (Reset_BIU="0") and (Start_Cycle ='0") then
if (Internal _ROMREAD Bar = '0") then -- load it.
Instruction_Buffer <= ROM Data (Data_Length downto O)
end if ;
elsif (Start_Cycle ='1") then -- Tinme to reset the system
if (BUORRW ="1") then -- if BlU
Instruction_Buffer <= (others =>"'0") ;
end if
else -- if (Reset_BIU="1") -- Tine to reset the system

Instruction_Buffer <= (others =>"'0") ;
end if ;
end process ;

-- The counter is reset whenever BlU is reset.
-- The counter is set whenever Start_Cycle is set.

Decode_Instruction : process (BIU OR RMJ, Reset BIU, Start_Cycle, Decode_lnst,
Byt e_C ock_I n, Pause_Fetch, Resune_Fetch,
Instruction_Buffer, Sync_Detected)
variable TEMP : integer ;

begi n

80

if (Reset_BIU="0") and (Start_Cycle = '0'") then
if Falling_Edge (Decode_lnst) then
if (Instruction_Buffer = "11111111") then

Pause_Fetch <= "1' ; --

end of schedul e detect ed.

elsif (Instruction_Buffer (4 dommto 0) = BIUID(4 dommto 0)) -- Is it mne?
or (Instruction_Buffer (Data_Length - 4 downto 0) = Gobal _BIU ID (Data_Length - 4
downto O)) then -- is it everyones?
if (Instruction_Buffer (7) ="'"1) then
Start_Transmit <= '1'
end if ;
if (Instruction_Buffer (6) ="'1") then
Start_Receieve <= '1' ;
end if
if (Instruction_Buffer (5) ="'1") then
Status_Dat a <='1 ;
end if ;
else -- so it is not mne, then
-- RMJ s operation is opposite of the BIUs
-- l.e., Wile BlUis transmtting, RWMJ nust be receiving data.
-- 9/5/96
-- RMJU nust transmit this data ASAP and unconditionally.
-- 9/6/96
if (BUORRW="'0 then -- am| RWR?
if (Instruction_Buffer (7) ="'"1) then
Start _Receieve <= '1'
MUX_Sel ect <= Instruct|0n Buf fer ;
end if
end if ;
end if ;
if (Instruction_Buffer (4 domnto 0) =BIUID(4 dommto 0)) -- Is it mne?
and (Instruction_Buffer (7)) ="'1")
and (Instruction_Buffer (5) ="'1")
and (BBUORRW ="'0") then -- am| RWR
Start_Conmmand <= '1'
end if
end if
-- Special case of RWMU.
-- Send out data as soon as receiving them
-- 9/6/96
if (Sync_Detected = '1'") then
if (BUORRW ="'0") then -- am| RWMJ?
-- This is the nunber of clock cycl es that takes the data to
-- go thruthe RMJ, i.e., pinto pin delay of RMU at this tinme.
-- This value nust be increased after introduction of voting or
-- other operations on the inconm ng data.
-- 9/6/96
TEMP : = 3 ;
end if ;
end if ;
if Rising_Edge (Byte_dock_In) then
Start_Transnit <= '0' after Delay 5 ns ;
Start_Receieve <= '0' after Delay_5_ns ;
Status_Data <= '0" after Delay_5_ns ;
Start_Command <= '0' after Delay_5_ns ;
if (TEMP > 0) then
TEMP : = TEMP - 1 ;
end if ;
if (TEMP =1) then
Start_Transmit <= '1" after Delay_5_ns ;
Status_Data <= '1" after Delay_5 ns ;
end if ;
end if ;
elsif (Reset_BIU="1") then -- Tine to reset the systemand intialize the counter.

81

TEMP := 0 ;

Pause_Fet ch <='0
Start_Transmt <= '0'
Start_Receieve <= '0'
Status_Data <='0'
Start_Command <= '0'

elsif (Start_Cycle ='1") then -- Time to reset and intialize the counter.
Pause_Fet ch <='0" ;
Start_Transmit <= '0" ;
Start _Receieve <= '0' ;
Status_Data <='0" ;
Start_Command <= '0' ;
end if ;

if (Resume_Fetch = '1'") then
Pause_Fetch <= '0" ;
end if ;

end process ;

-- This process fetches one instruction at a time upon receiving the
-- Start_Cycle signal. Each instruction is 2 bytes long. |t loads the
-- delta tine of the next instruction into the Delta_Ti ne_Cl ock counter
-- and counts it down. Wen it reaches zero, it then issues a read signal
-- to the EPROM It stops/pauses readi ng fromthe EPROM upon Pause_Fetch
-- and Pause_Fetch is asserted when the end-of-schedule delimter is
-- encount er ed.
-- The counters are reset whenever BlU is reset.
-- The counters are set whenever Start_Cycle is set.
Fetch_Instruction : process (BIU OR RMJ, Reset BIU, Start_Cycle,
Byte_O ock_I n, Pause_Fetch, Resune_Fetch,
ROM Dat a, |nternal ROM READ Bar)

-- const ant ROM DEPTH : integer := 2 ** ROM DEPTH BITS ;
vari abl e Address : integer range 0 to ROMDEPTH - 1 := 0 ;
variable Delta_Time_C ock : integer range 0 to 256 := 0 ;
begin
if (Reset_BIU="0") and (Start_Cycle ='0") then
if Rising_Edge (Byte_Cdock_In) then

Decode_Inst <= '1' after Delay_5 _ns ;
READ A Inst <= '1' after Delay_5_ns ;

if (Pause_Fetch ='0") then
Resune_Fetch <= '0' ;

if (Internal_ROMREAD Bar = '0") then -- load it.
Delta_Time_C ock := To_integer (ROMData (ROMWDTH - 1 downto 8)) ;
Delta_Time_Cock := Delta_Time_Cock + 1 ; -- to avoid lock up due to O

elsif (Delta_Tinme_Cock >0) then
Delta_Time_Clock := Delta_Time_Cock - 1 ;

if (Delta_Time_Cock =0) then
-- It reached zero and tinme to decode the old opcode and read the next
instruction.
Decode_I nst <= '0" after Delay_5 ns ;
-- Issue a read instrunction to the EPROM
READ A | nst <= '0" after Delay_5 ns ;

-- Synopsys vs Cadence
-- ROM _ADDRESS <= Address after Delay_5_ns ;

-- 5/8/97

-- ROM _ADDRESS <= To_StdLogi cVector (Address, ROM DEPTH BITS) after Delay_5_ns ;
ROM ADDRESS <= To_StdLogi cVector (Address, ROM ADDRESS LINES) after Delay_5 ns
Address := (Address + 1) nod ROM DEPTH ;
if (Address = 0) then -- |.e. we read all EPROM and didn't detect end-of-

schedul e?

82

EPROM Error _Flag <= '1" ; -- There was an error

end if
end if
end if ;
el se -- Pause_Fetch ='1', reset the RVJ
if (BUORRW ="'0") then -- if RW
Address := 0 ; -- read first instruction
Delta_Tine_Cock :=1; -- This will force the reading of the first instruction

rightaway at the first Byte cI ock.
Decode_Inst <= '1' after Delay_5_ns ;
EPROM Error_Flag <= '0' ;
ROM ADDRESS <= To StdLogl cVector (Address, ROM ADDRESS LINES) after Delay_5_ns ;
Resune_Fetch <= "1’

end if ;
end if
end if ;
elsif (Reset_BIlU="1") then -- Time to reset the systemand reintialize the counter.
if (BUORRW ="'1") then -- if BIU
Address := 2 ; -- skip first two instructions
Delta_Time_Cock := 0 ;
else -- elseif (BUORRWJ="0") then -- if RW
Address := 0 ; -- read first instruction
Delta_Time_Cock :=1; -- This will force the reading of the first instruction

rightaway at the first Byte clock.
end if ;

Decode_Inst <= '1" after Delay_5_ns ;

READ A Inst <= '1' after Delay_5_ns ;

EPROM Error_Flag <= '0" ;

ROM _ADDRESS <= To_St dLogi cVector (Address, ROM ADDRESS LINES) after Delay_5 ns ;
Resunme_Fetch <= '0' ;

elsif (Start_Cycle ="'1") then -- Time to reset and reintialize the counter.
if (BBUORRMJ="1") then -- if BIU
-- It has to BIU, so restart schedule.
Address := 2 ; -- skip first two instructions

Delta_Time_Cock := 1 ;

Decode_Inst <= '1' after Delay_5_ns ;

EPROM Error_Flag <= '0' ;

ROM _ADDRESS <= To_St dLogi cVector (Address, ROM ADDRESS LINES) after Delay_5_ns ;

end if
end if ;

end process ;

-- File Nanme: EPROM_P. VHD

-- Host Machi ne: GATEWAY 486/ 33 (I BM AT d one)

-- Target Machine: GATEWAY 486/ 33 (I BM AT d one)

-- Environnent : Model Technol ogy VHDL Sinmulation for Wndows (Ver 4.2e)
-- DCS Version 6.2

-- Organi zation: NASA- LaRC

-- Project: Fly By Light - Power By Wre (FBL-PBW

-- Aut hor: Mahyar R Mal ekpour

-- Creation Date: 8/ 19/ 96

-- Name/ Nunber :

-- EPROM _P. VHD (entity/architecture)
-- Abstract:

-- Acronyns/ Abbrevi ati ons:
-- FBL/ PBW

- - Dependenci es:
-- none

83

-- G obal Objects:
-- Exceptions:

-- Machi ne/ Conpi | er Dependenci es:

-- Revi sions:
-- Modi fied on: 5/8/1997
-- by: Mahyar Mal ekpour

-- 1. Updat ed val ue of the ROM DELAY to reflect the AMD27C256-55 chip tim ng,
-- i.e., Qutput Enable to Qutput Delay (Toe).
-- 2. Updated value of the ROMWDTH to reflect the AVD27C256-55 wi dt h.

library | EEE ;
use | EEE. std_| ogi c_1164.al | ;

package EPROM P is

const ant ROM DELAY : tine =35 ns ; -- Qutput Enable to Qutput Delay (Toe)
const ant ROM DEPTH : integer := 128 ; -- actually 32768 bytes ;
const ant ROMWDTH : integer := 16 ; -- 2 eprons
constant ROM ADDRESS LINES : integer := 12 ;

end EPROM P ;

-- File Nane: RECEVR_E. VHD

-- Host Machi ne: GATEWAY 486/ 33 (I BM AT d one)

-- Target Machine: GATEWAY 486/33 (I BM AT Cl one)

-- Environnent : Model Technol ogy VHDL Sinmulation for Wndows (Ver 4. 3f)

-- DCS Version 6.2

-- Organi zation: NASA- LaRC

-- Project: Fly By Light - Power By Wre (FBL-PBW

-- Aut hor: Mahyar R Mal ekpour

-- Creation Date: 8/ 20/ 1996

-- Name/ Nunber :

-- RECEVR (entity)

-- Abstract:

-- This nodule is the Receiver controller that checks for the timng of
-- receiving i nconm ng data/ conmand packets.

-- SI GNAL DEFI NI TI ON :
-- Acronyns/ Abbrevi ati ons:

- - Dependenci es:
-- | EEE. STD_LOGQ C_1164

-- dobal Objects:

-- Exceptions:

-- Machi ne/ Conpi | er Dependenci es:
-- Revisions:

-- Modi fied on: 2?2/ ??/96
-- by: Mahyar Mal ekpour

library | EEE ;
use ieee.std_l ogic_1164.all;
use WORK. CNSTNT_P. al | ;

entity RECEVR is

port (Reset_BIU in std_logic ;
Start_Cycle in std_logic ;
Recei eve_Dat a in std_logic ;

84

Byte_C ock_In in std_logic ;
Load_Conmmand_Reg : in std_logic ;
Start _Recei eve out std_logic ;
Recei ve_Error_1 out std_logic ;
Recei ve_Error_2 out std_logic ;
Switch_Time_ln in std_l ogic_vector (2 dowmmto O) -- three bits for now
)

end RECEVR ;

-- File Name RECEVR_A. VHD

-- Host Machi ne: GATEWAY 486/ 33 (I BM AT d one)

-- Target Machine: GATEWAY 486/33 (| BM AT Cl one)

-- Envi ronnent Model

-- DOS Version 6.2

-- Organi zation: NASA- LaRC

-- Project: Fl'y By Light -

-- Aut hor: Mahyar R Mal ekpour
-- Creation Date: 8/ 20/ 1996

-- Name/ Nunber :

-- RECEVR

-- Abstract:

SI GNAL DEFI NI TI ON :
Acr onyns/ Abbr evi ati ons:

Dependenci es:
| EEE. STD_LOGQ C_1164

d obal Objects:

Excepti ons:

Machi ne/ Conpi | er Dependenci es:
Revi si ons:

Modi fied on: ??/??/96

library | EEE ;

use WORK. CNSTNT_P. al | ;

use ieee.std_logic_arith.all

use work.ny_std_logic_arith.all ;

architecture RECEVR Behave of RECEVR is

begin

This process checks for timng of data packet arrival
margin of Switch_Time byte cl ocks.

for this nodule, it raises error
8/ 20/ 96

Check_I ncomi ng_Data_Ti ming :

variable Switch_Tine : integer :=

vari abl e Bool _Flag : std_l ogic

vari abl e TEMP : integer :=
begi n

if (Reset BIU="'0

process (Reset_BIU, Start_Cycle,

0
=1 --
0

) and (Start_Cycle ='0'

Technol ogy VHDL Sinul ati on for Wndows (Ver 4.3f)

Power By Wre (FBL-PBW

(architecture)

This nmodule is the Receiver controller that checks for the timng of
recei ving i ncommi ng dat a/ command packets.

within the
| f receive a package

flags.

it doesn't

Recei eve_Dat a,
Byt e_C ock_In,
Load_Conmmand_Reg)

TRUE

) then -- time to reset.

if Rising_Edge (Receieve_Data) then

85

Bool _Flag := '1" ;
TEMP := 0 ;
end if ;

if Rising_edge (Byte_Clock_In) then

if (Bool_Flag = '1'") then
TEMP := TEMP + 1 ;

end if ;

if (TEMP > Switch_Tinme) then
TEMP :=0; -- too late for the data to arraivel!
Bool _Flag := '0" ;
Receive_Error_1 <= "'1" ; -- Timing problem

else -- reset the error flags.
Receive_Error_1 <= '0" ;
Receive_Error_2 <= '0" ;

end if

Start_Receieve <= '0' after Delay_5_ns ;
end if ;

if Rising_Edge (Load_Command_Reg) then
if (Bool _Flag ='1") then
if (TEMP <= Switch_Tine) then
Start _Receieve <= '1'" after Delay_5_ns ;

end if ;
Bool _Flag :="'0" ; -- tine to reset the flags
TEMP := 0 ;
el se
Receive_Error_2 <= '1" ; -- Timng problem
end if
end if ;

el se
Switch_Tinme := To_integer (Switch_Tinme_In)
Receive_Error_1 <= '0" ;
Receive_Error_2 <="'0'
TEMP := 0 ;
Bool _Flag :="'0" ;
Start_Receieve <= '0' ;

end if ;

end process ;

-- File Nane: STATUS_E. VHD

-- Host Machi ne: GATEWAY 486/ 33 (I BM AT d one)

-- Target Machine: GATEWAY 486/ 33 (I BM AT d one)

-- Environnent : Model Technol ogy VHDL Sinulation for Wndows (Ver 4. 3f)
-- DOS Version 6.2

-- Organi zation: NASA- LaRC

-- Project: Fly By Light - Power By Wre (FBL-PBW
-- Author: Mahyar R Mal ekpour

-- Creation Date: 8/ 26/ 1996

-- Name/ Nunber:

-- STATUS (architecture)
-- Abstract:

-- This file contains the entity for the send status out nodul e.

-- The counter used is set to the nunber of status registers + 2 for the
-- header and ID information. The counter counts down to O indicating the
-- end of operation.

-- S| GNAL DEFI NI TI ON :

-- Acronyns/ Abbrevi ati ons:

-- Dependenci es:
-- | EEE. STD_LOG C_1164

86

-- G obal Objects:

-- Exceptions:

-- Machi ne/ Conpi | er Dependenci es:
-- Revi sions:

-- Modi fied on: ??/??/96
-- by: Mahyar Mal ekpour

library | EEE ;
use WORK. CNSTNT_P. al | ;
use ieee.std_l ogic_1164.all;

entity STATUS is

port (
Bl U OR_ RMJ in std_logic ;
Reset _BlI U in std_logic ;
Start_Cycle in std_logic ;
BIU ID in std_l ogi c_vector (Data_Length downto 0)
Start _Command in std_logic ;
Start_Transm t in std_logic ;
Data_Status_Flag : in std_logic ;
Dat a_Mode_Bi t in std_logic ;
FIFO Data_In in std_l ogi c_vector (Data_Length downto 0) ;
Byte_C ock_In in std_logic ;
Status_Reg_In in std_l ogic_vector (Data_Length downto 0)
Transm t _Data ©out std_logic ;
Load_Byt e_Cut ;. out std_logic ;
Mbde_Bit _Qut ©out std_logic ;
Data_Status_OQut : out std_l ogi c_vector (Data_Length downto 0)
)
end STATUS ;
-- File Nane: STATUS_A. VHD
-- Host Machi ne: GATEWAY 486/ 33 (I BM AT d one)
-- Target Machine: GATEWAY 486/ 33 (I BM AT d one)
-- Environnent : Model Technol ogy VHDL Sinul ation for Wndows (Ver 4. 3f)
-- DOS Version 6.2
-- Organi zation: NASA- LaRC
-- Project: Fly By Light - Power By Wre (FBL-PBW
-- Author: Mahyar R Mal ekpour
-- Creation Date: 8/ 26/ 1996
-- Name/ Nunber:
-- STATUS (architecture)
-- Abstract:

-- This file contains the architecture for the send status out nodul e.
-- The counter used is set to the nunber of status registers + 2 for the
-- header and ID information. The counter counts down to O indicating the
-- end of operation.

-- S| GNAL DEFI NI TI ON :

-- Acronyns/ Abbrevi ati ons:

- - Dependenci es:
-- | EEE. STD_LOG C 1164

-- G obal Objects:
-- Exceptions:

-- Machi ne/ Conpi | er Dependenci es:

87

-- Revi sions:

-- Modi fied on: 9/16/96
-- by: Mahyar Mal ekpour
-- Making use of another previously unused bit, the status bit.

library | EEE ;

use WORK. CNSTNT_P. al |

use ieee.std_logic_arith.all ;
--use work.ny_std _logic_arith.all

architecture STATUS Behave of STATUS is

-- set to '1" for command, '0' for data

signal Status_Mde_Bit : std_logic ;
_vector (Data_Length downto 0) ;

si gnal Status_Info : std_|ogi
signal Transmit_Status : std_|l ogi

O0O0O0OO0

si gnal Wite_A Byte_1 : std_logic ; -- :="1" ;

si gnal Wite_ A Byte 2 : std_|l ogi - =1

signal Conmand_Mdde_Bit : std_logic -- set to "1 for comand, '0" for data
si gnal Command_Qut : std_logic vector (Data_Length downto 0) ;

signal Transmit_Command : std_logic ;
begin
Load_Byte Qut <= (Wite_A Byte_ 1 and Wite_ A Byte 2) or Byte _Clock_In after Delay_5_ns ;

-- This process is a MJX and decides to send out data or status

-- information.

Send_Data_or_Status : process (BIU OR RMJ, Reset_BIU, Start_Cycle, Start_Transmt,
Dat a_St at us_Fl ag, Conmand_Mbdde_Bit, Command_CQut,
Dat a_Mbde_Bit, FIFO Data_ln,
St atus_Mde B|t Status_Info, Start Command)

variable Choice : integer := 0 ;
begin
if (Reset_BIU="0") and (Start_Cycle ='0") then
if Rising Edge (Start Transm’t) then
if (Data_Status_Flag = '1') then
if (Start_Conmand = '1') then -- if RW
Choice := 2 ; -- command
else -- BlU
Choice :=1; -- data
end if ;
el se
Choice := 0 ; -- status, RMJ and Bl U
end if
end if ;

if (Choice =2) then
Dat a_St at us_Qut <= Conmand_CQut
Mbde_Bit_Qut <= Conmand_Mde Bit ;

elsif (Choice = 1) then
Data_Status_Qut <= FIFO Data_ln ;
Mbde Bit_Qut <= Data_Mbdde_Bit

el se -- Choice = 0
Data_Status_Qut <= Status_Info ;
Mbde_Bit_Qut <= Status_Mde Bit ;

end if ;

else -- tine to reset the system
Choice := 1 ;

end if ;

end process ;

-- The Count is reset whenever BlU is reset.

88

-- The Count is reset whenever Start_Cycle is reset.
Send_Status_Qut : process (Reset_BIU, Start_Cycle, Transmt_Status,
Byte_Clock_In, Status_Reg_In)

variable Count : integer := 0 ;

begin
if (Reset_BIU="0") and (Start_Cycle = '0'") then
if Falling_Edge (Byte_COock_In) then
if (Transmt_Status = '1'") then
Count :=5; -- One extra count to be conpatible with the Transnit_Data case.
end if ;

Status_Mode _Bit <= '0" ;
Wite A Byte_ 1 <="'0" ;

if (Count = 4) then -- send out sync-pattern first
Status_Info <= (others =>"'1") ;
Status_Mdde_Bit <= "'1' ;

elsif (Count = 3) then -- send out ny id next
Status_Info <= BIUID; --

Status_Info (Data_Length) <= '0" ; -- set the command bit to data.
Status_Info (Data_Length - 1) <="'1" ; -- set the status bit.
elsif (Count = 2) then -- send out the count of data bytes to follow
Status_lnfo <= "00000001"
elsif (Count = 1) then -- send out the status now
Status_Info <= Status_Reg_In ;
else -- if (Count = 0) then -- stop
Wite_ A Byte 1 <="'1" ;
end if ;
if (Count >= 1) then
Count := Count - 1 ;
end if ;
end if
else -- tine to reset the system
Count := 0 ;

Status_Info <= (others =>"'0")
Wite_A Byte 1 <="'1' ;

end if ;
end process ;

Send_Commands_CQut : process (BIU OR RMJ, Reset_BIU, Start_Cycle,
Transm t _Conmmand, Byte_Clock_In)

variable Count : integer := 0 ;

begin
if (Reset_BIU="0") and (Start_Cycle ='0") then
if Falling_Edge (Byte_COock_In) then
if (Transmit_Command = '1') then
Count := 4 ;
end if ;

Command_Mbde_Bit <= '0' ;
Wite_A Byte 2 <= '0" ;

if (Count = 3) then -- send out sync-pattern first
Command_Qut <= (others =>"'1") ;
Command_Mode_Bit <= "'1'

elsif (Count =2) then -- send start_cycle command to all BlIUs by
Command_CQut <= "00011111" ; -- dobal _BIUID;
Command_Qut (Data Length) <='1'" ; -- set the command bit.

elsif (Count = 1) then -- send out the conmands
Command_CQut <= "00000001" ; -- bit zero => start_cycle, for now

89

else -- if (Count = 0) then -- stop
Wite_A Byte 2 <= '1' ;
end if

if (Count >= 1) then
Count := Count - 1 ;
end if ;
end if ;

else -- time to reset the system
Count := 0 ;
Command_Qut <= (others =>"'0") ;
Wite_ A Byte 2 <="'1'

end if

end process ;

Set_ DS C Flags : process (BIUORRWMJ, Start_Transnit, Data_Status_Fl ag,
Start _Command)

begin
if (BUORRW ="'0") and (Start_Command = '1") then -- if | am RW
Transm t _Command <= '1' ;
Transmt_Data <='0" ;
else -- if | amBIU
Transm t _Conmmand <= '0' ;
Transmt _Data <= Start_Transnmit and Data_Status_Flag ; -- 1 and 1
end if ;

Transmt_Status <= Start_Transmt and (not Data_Status_Flag) ; -- 1 and O

end process ;

90

Appendi x B

C Codes

/1 File: TESTPAL. CPP
I Aut hor : Mahyar Mal ekpour, Gabriel Vel asquez
1 Conment s: Fi | e Docunent ati on
I Creation Date: Novenmber 29, 1995
11 Last Mbd: Novenber 30, 1995
I Comment : Changed sone vari abl e' s nanmes
#i ncl ude <stdio. h>
#i ncl ude <i ostream h>
#i ncl ude <string. h>
#i nclude <stdlib. h>
void nain()

char one_byte ;

int i

cout << "Ready to test the tri-state signal." << endl;

cout << "Enter a charactor to continue." << endl;
cin >> one_byte ;

_asm //inline assenbly
{
mov dx, 0300h /! Reset and D/ P_Bar Port
nov al, 01h // Reset High, D/P_Bar Tristate
out dx, al
}
for(i=0;i<2;i++) //Creates a del ay(between 6 and 7 m crosecs)
_asm /linline assenbly
{
nov dx, 0300h //Reset and DO/ P_Bar Port
mov al , 00h // Reset Low, D/P_Bar Tristate
out dx, al
}
}
for(i=0;i<2;i++) //Creates a del ay(between 6 and 7 mi crosecs)
{
_asm /1inline assenbly
{
mov dx, 0300h //Reset and D/ P_Bar Port
mov al , 02h /! Reset Low, D/ P_Bar Low
out dx, al
}
}
for(i=0;i<2;i++)
{
_asm
{
nmov dx, 0300h /! Reset and D/ P_Bar Port
mov al , 03h // Reset High, D/P_Bar Low
out dx, al
}
}
_asm
{
nmov dx, 0300h /! Reset and D/ P_Bar Port
mov al , 01h // Reset Hi gh, D/P_Bar Tristate
out dx, al
}

cout << endl;
cout << "Finished test." << endl;

} // end main

91

N N N N N N NN NNy
11

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

File: XC3020. CPP
Aut hor : Mahyar Mal ekpour
Conment :

Creation Date: 4/12/96

Last Mbd: 3/ 12/ 96
Changed the code to reflect the changes in the base addresses used
in the PAL and in the XC3020.

a d Address New Addr ess Devi ce Function

300H 306H PAL Reset XC3020

301H 307H PAL Pr ogr am XC3020

302H 302H XC3020 Wite status (Reset FIFGs)
303H 300H XC3020 Read/ Wite FIFGCs

- 301H XC3020 Read status of FIFGs

---- 303H XC4000 Transfer Data

304H reserved reserved

---- 305H XC3020 Reset and Program XC4000

/1
R NN NNy

#i ncl ude <stdio. h>

#i ncl ude <i ostream h>
#i ncl ude <string. h>
#i ncl ude <stdlib. h>

void Reset _Xilinx_3000 ()
//void WiteToXC3000 ()

/1 #define ARY_SI ZE 100

voi d nain()

FILE *infile_ptr ; // , *outfile_ptr ;

int array_count = 0 ;
int infile_len ;

char infilename [80] ;
int char_in ;

char *f_ptr ;

Reset _Xilinx_3000 () ;

/1 Get the input file nanme from user.

cout << "Enter Xilinx (XC3000 Family) BitstreamFile Nane (*.rbt):
cin >> infilenane ;

cout << endl

infile_len = strlen (infilenane)
f_ptr = & nfilename [infile_len - 4] ;

if (_strnicnp (f_ptr, ".rbt", 4))

cout << "Error: No rbt extention !!!!" << endl ;
exit (1) ;
}
/1 Open input file
if ((infile_ptr = fopen (infilename, "r")) == NULL)
{
cout << "Cannot open input file: " << infilename << endl ;
exit (0) ;
cout << "Opened the input file: " << infilename << " to read." << endl ;

array_count = 0 ;

/!l Read the input rbt text file and save it in an array of char's.
char_in = fgetc (infile_ptr) ;

while (feof (infile_ptr) ==0)

92

array_count ++ ;
if ((char) char_in =="'1")

asm

{

nmov dx, 0307h

nmov al, 01h

out dx, al /I Data High
}

el se
if ((char) char_in =="'0")
{

asm

{

nmov dx, 0307h

nmov al , 00h

out dx, al // Data Low
}

Yo/l if
/'l Read the next character.
char_in = fgetc (infile_ptr) ;
} /1 while
fclose (infile_ptr)
cout << endl
cout << endl ;
cout << "Finished reading the XC3000 rbt file." << endl;
cout << endl << endl;
cout << "Nunber of characters read: " << array_count << endl;
} // end main
NN NNy

/1 1. A'1 sets the DP_Bar Low, while a '0' sets the D)P_Bar into

11 a state of high inpedence 'Z'.

/1 2. Reset (bit DO) and D/P_Bar (bit Dl) are at Address 306.
/1 The Data Port is at Address 301. Bit DO is used serially.
/1

NN NNy
voi d Reset_Xilinx_3000 ()
{

int i;
for(i=0;ic<4;i++) //Creates a del ay(between 6 and 7 mi crosecs)
{
_asm /linline assenbly
{
mov dx, 0306h /1D P_Bar and Reset Port
mov al , 00h /1D P_Bar Tristate, Reset Low
out dx, al
}
}
for(i=0;i<4;i++) //Creates a del ay(between 6 and 7 microsecs)
{
_asm /linline assenbly
{
mov dx, 0306h /1D P_Bar and Reset Port
mov al , 02h /1D P_Bar Low, Reset Low
out dx, al
}
}

for(i=0;ic<4;i++)

_asm

{

93

mov dx, 0306h
nmov al, 03h
out dx, al
}

}

_asm

mov dx, 0306h

nmov al, Olh

out dx, al

}

} // Reset_Xilinx_3000

TIETEELEL i rrrrnnng
THLEEEEEL il
TILTEEEEL i rrrrnrng
/1

/1 File: XC4000. CPP

/1

11 Aut hor : Mahyar Mal ekpour
/1

/1 Conment :

/1

/1 Creation Date: 4/12/96

/1

/1 Last Mbod: 4/ 29/ 96

11 Changed the code to reflect the ¢
/1 in the PAL and in the XC3020.

/1

/1 A d Address New Address
R e
/1 300H 306H PAL
/1 301H 307H PAL
/1 302H 302H XC3
/1 303H 300H XC3
I ---- 301H

I ---- 303H

I ---- 304H

I ---- 305H

/1

THEEEEEEE it
#i ncl ude <stdio. h>

#i ncl ude <i ostream h>

#i ncl ude <string. h>

#i ncl ude <stdlib. h>

voi d Reset _XC4000 ()
int XC4000_Ready () ;
int Wite XC4000 ()

voi d mai n()

and Reset Port
Low, Reset High

Qg
19 °
T

and Reset Port
Tristate, Reset Hi gh

hanges in the base addresses used

Devi ce Function
Reset XC3020
Program XC3020
020 Wite status (Reset FIFGs)
020 Read/ Wite FIFGCs
XC3020 Read status of FIFGs
XC4000 Transfer Data
reserved reserved
XC3020 Reset and Program XC4000

FEEEEEEEEE bbb rri g

char ch ="a'
while (1)
if ((ch=="x)[] (ch=="Xx))
cout << endl << "Exiting program" << endl
break ;
elseif ((ch=="r")1]] (ch="R))

cout << "Reseting the XC4000" << endl

Reset _XC4000 ()

elseif ((ch =="'¢g

) 1

cout << "Cheking status of t
XC4000_Ready ()

Llseif((ch=="p) ||

(ch ==

(ch=="P

'S 1))
he XC4000" << endl

))

94

cout << "Progranm ng the XC4000" << endl ;
Wi te_XC4000 () ;

}
cout << endl
COUt << Memmmim i " << end
cout << "Waiting for command:" << endl
cout << " r to Reset the XC4000," << endl
cout << " p to Programthe XC4000," << endl
cout << " s to read Status of the XC4000, or" << end
cout << " x to eXit this program" << endl
cin >> ch ;

cout << endl
} // end while
} // end main
;5///

/1 1. Reset and progranmming of the XC4000 is done thru the sane port 305Hex
/1 2. \Wile accessing this port, uP data bus is used to wite and read to

11 to this port

/1 3. Functions XC4000 Pins uP Data Bus Pins
[e R
11 Reset PROG_Bar Do

1 Program Din D1

/1 Read St aus INIT DO

/1 Wai t DONE D1

/1 4. Thus, while programm ng XC4000, DO rnust be held high
/1
NN NNy

voi d Reset _XC4000 ()

t
int i
for(i=0;i<4;i++) /]l Creates a delay (between 6 and 7 m crosecs)
{
_asm /1 inline assenbly
{
mov dx, 0305h
nov al , 00h /1 PROG Bar Low
out dx, a
}
}
for(i=0;i<4;i++) /]l Creates a delay (between 6 and 7 m crosecs)
_asm /linline assenbly
{
mov dx, 0305h
nmov al, 01h /1 PROG Bar Hi gh
out dx, a
}
}

} // Reset_XCA000

R R
int XC4000_Ready ()

int INNT_In
_asm /1 inline assenbly
{
mov dx, 0305h
mov ah, 00h
in al, dx
and al, 003h /1 mask of f unused bits
mov INIT_In, ax
}
if (INNT_In==0)
{

cout << "INIT is Low' << endl

95

cout << "DONE is Low' << endl ;
cout << "There was an error!" << endl
return (1) ;

else if (INNT_In==1)

{
cout << "INIT is H gh" << endl ;
cout << "DONE is Low' << endl
cout << "XC4000 is ready to be programmed." << endl ;

}else if (INT_In==2)

cout << "INIT is Low' << endl ;

cout << "DONE is Hi gh" << endl
cout << "There was an error!" << endl ;
return (1)

Eelse if (INT_In ==23)

cout << "INIT is H gh" << endl
cout << "DONE is High" << endl ;
cout << "XC4000 is ready for normal operation and if desired to be reprogrammed." << endl

}
el se // This should never happen!

cout << "There was an error!" << endl ;
cout << "XC4000 status is : " << INIT_In << endl
return (1) ;

return (0)
} /1 XC4000_Ready

R
int Wite_XC4000 ()

FILE *infile_ptr ;

int Bit_Count =0 ;

int infile_len ;

char infilename [80] ;

int char_in ;

char *f_ptr ;

int Frame_Error, Frame_Num ;

int Bits_In_Frame ; // used to prevent sending CRC bits to the xc4000.

//CGet the input file nane from user.

cout << "Enter Xilinx (XC4000 Family) BitstreamFile Nane (*.rbt):
cin >> infilenane ;

cout << endl

infile_len = strlen (infilenane) ;
f_ptr = & nfilename [infile_len - 4171 ;

if (_strnicnp (f_ptr, ".rbt", 4))

cout << "Error: No rbt extention !!ll" << endl ;
return (1)
}
/1 Open input file
if ((infile_ptr = fopen (infilename, "r")) == NULL)
{

cout << "Cannot open input file: " << infilename << endl ;
return (0) ;

cout << "Opened the input file: " << infilename << " to read." << endl ;

/1 See notes by the Reset XC4000 functi on.

Bit_Count = 0 ;

Frame_Num = 0 ;

Frane_Error = 0 ;

Bits_In_Frane = 0 ;

/! Read the input rbt text file and save it in an array of char's.

96

char _i fgetc (infile_ptr) ;

n =
while (feof (infile_ptr) ==0)

Bi t _Count ++ ;
Bits_I n_Franme++ ;

if (char_in==10) // if LF
{

Frame_Error = XC4000_Ready ()

if (Frame_Error) // exit the function

{

fclose (infile_ptr)
cout << endl ;

cout << "There was a FRAME ERROR at the franme nunber '

cout << endl ;

cout << "Term nated readi ng the XC4000 rbt file." << endl

cout << endl ;

cout << "Nunber of characters read: ;
cout << "Total of " << Frame_Num<< " franes were witten to the XC4000."

return (1)

}

Frame_Numt+ ;
Bits_In_Frame = 0 ;

}

el se

if ((char) char_in == "1

{

_asm

{
nmov dx, 0305h
nmov al, 03h
out dx, al

}

}

el se

if ((char) char_in =="'0'

{

_asm

{
nmov dx, 0305h
mov al, 01h
out dx, al

}

Y o/l if

/1 Read the next character.
char _in = fgetc (infile_ptr)
} /] while

fclose (infile_ptr)

/1 Check the status once nore
Frame_Error = XC4000_Ready () ;

cout << endl ;
cout << endl

cout <<

cout << endl << endl;

cout << "Nunber of characters read:
cout << "Total of << Frame_Num << "

<< Bit_Count << endl

//Data High

// Data Low

"Fi ni §hed readi ng the XC4000 rbt file." << endl ;

return (0) ;

} /1 Wite_ XC4000

" << Bit_Count << endl ;

franes were witten to the XC4000."

97

<< endl

<< Franme_Num << end|

<< endl

Appendi x C
Pin Assignments and Layouts

Following is the content of file “pal 22v.npi” that describes the PALL22V10 pin assignnents:

{ XOR_POLARI TY_CONTROL FALSE, MAX_XOR PTERMS 0, POLARI TY_CONTROL TRUE, MAX_PTERMS 16, MAX_SYMBOLS
20};

DEVI CE
{ XOR_POLARI TY_CONTROL FALSE, MAX_XOR PTERMS 0, POLARI TY_CONTROL TRUE, MAX_PTERMS 186,
MAX_SYMBOLS 20} :
TARGET ' PART_NUVBER AMD PALLV22V10- 10PC ;

I NPUT CLK_IN: 1;

| NPUT DL: 2;

I NPUT AEN: 3;

| NPUT ADDRESS 0_: 4

I NPUT ADDRESS 1_: 5

| NPUT ADDRESS 2_: 6
7
8

| NPUT ADDRESS_3_:

| NPUT ADDRESS 4_:

I NPUT ADDRESS 5_: 9;

| NPUT ADDRESS 6_: 10;

I NPUT ADDRESS_7_: 11;

| NPUT ADDRESS 8_: 13;

I NPUT ADDRESS_9_: 14;

DATA_OUT: 15 { XOR_POLARI TY_CONTROL FALSE, MAX_XOR PTERMB 0, POLARI TY_CONTROL TRUE,
MAX_PTERVB 16, MAX_SYMBOLS 20};

CLK_OUT: 16 {XOR POLARI TY_CONTROL FALSE, MAX_XCR PTERMS 0, POLARI TY_CONTROL TRUE,
MAX_PTERMVB 16, MAX_SYMBOLS 20};

I NPUT FEEDBACK_DONE_PROG 17;

DONE_PROG BAR 18 {XOR POLARI TY_CONTROL FALSE, MAX_XCR PTERMS 0, POLARI TY_CONTROL TRUE,
MAX_PTERVB 16, MAX_SYMBOLS 20} ;

RESET_OUT: 19 { XOR_POLARI TY_CONTROL FALSE, MAX_XOR PTERMS 0, POLARI TY_CONTROL TRUE,
MAX_PTERVB 16, MAX_SYMBOLS 20} ;

DONE_PROG TRI STATE: 20 { XOR_POLARI TY_CONTROL FALSE, MAX_XOR PTERMB 0, POLARI TY_CONTROL
TRUE, MAX_PTERMB 16, MAX_SYMBOLS 20} ;

I NPUT | OWR_BAR: 21;

I NPUT DO: 22;

X_CLK_OUT: 23 { XOR_POLARI TY_CONTROL FALSE, MAX_XOR PTERVB 0, POLARI TY_CONTROL TRUE,
MAX_PTERVB 16, MAX_SYMBOLS 20}

NO_CONNECT 12, 24;
END DEVI CE;

VI RTUAL DFF. npd001111. x, DFF. npd001105. x, BUFTH. nrbd000054. x, Xdefaul t_0,
w000622, w000623, w000517, w000428,
w000511, w000618, w000557, BUFTH. nbd000054. i,
BUFTH. nnd000054. oe, BUFTH. nnd000054. RETURN, f GND. nnd000962. RETURN, DFF. npd001111.q,
DFF. nrbd001111. q_bar, DFF. npd001111.d, DFF.nnpd001111.clk, DFF.npd001105. q,
DFF. nnd001105. q_bar, DFF. npnd001105.d, DFF. npd001105. cl k;

98

Following is the content of file “xc3020.cst” that describes the XC3020 pin assignnents:

; Last update: Mahyar 3/28/1996
; Added Chi p_Sel ect _Bar
; Last Modified on 4/10/1996

. Last Mbdified on 5/2/1996
; DIN_4000 is tied to D(0) and PROG 4000 is tied to D(5)
; So, they don't have special pins anynore.

: Last Modified on 6/7/1996
© Added DI RCTION pin 44

pl ace bl ock CCLK 4000 P75;
; pl ace bl ock DI N_4000 P76;
pl ace bl ock PROG 4000 P77
pl ace bl ock | NI T_4000 P78;
pl ace bl ock DONE_4000 P66;

pl ace bl ock CH P_SELECT_BAR P11;
pl ace bl ock RESET_BI U P30;

pl ace bl ock DI RECTI ON P44;

; pl ace bl ock UP_DATA PIN 5 P61;
pl ace bl ock DATA_READ BAR P10;
pl ace bl ock DATA_WRI TE_BAR P25;

bl ace bl ock Bl U_FI FO WRI TE_BAR P68;
pl ace bl ock Bl U_FI FO READ BAR P70;

pl ace bl ock QUTPUT_FI FO_HF_BAR P52;

pl ace bl ock OQUTPUT_FI FO_EMPTY_BAR P45;
pl ace bl ock OQUTPUT_FI FO_FULL_BAR P46;
pl ace bl ock QUTPUT_FI FO WRI TE_BAR P47;
pl ace bl ock QUTPUT_FI FO_READ BAR P48;
pl ace bl ock OUTPUT_FI FO_RESET_BAR P49;

pl ace bl ock | NPUT_FI FO HF_BAR P27;

pl ace bl ock | NPUT_FI FO EMPTY_BAR P29;
pl ace bl ock | NPUT_FI FO_ FULL_BAR P35;
pl ace bl ock | NPUT_FI FO WRI TE_BAR P37;
pl ace bl ock | NPUT_FI FO READ BAR P39;
pl ace bl ock | NPUT_FI FO RESET_BAR P40;

pl ace bl ock FI FO _DATA | N QUT<7> P67;
pl ace bl ock FI FO DATA | N QUT<6> P65;
pl ace bl ock FI FO _DATA | N QUT<5> P63;
pl ace bl ock FI FO DATA | N QUT<4> P62;
pl ace bl ock FI FO_DATA | N _QUT<3> P60;
pl ace bl ock FI FO DATA | N QUT<2> P59;
pl ace bl ock FI FO _DATA | N QUT<1> P58;
pl ace bl ock FI FO_DATA | N QUT<0> P56;

pl ace bl ock UP_DATA | N OQUT<7> P15;
pl ace bl ock UP_DATA | N OUT<6> P16;
pl ace bl ock UP_DATA | N OQUT<5> P17;
pl ace bl ock UP_DATA | N OUT<4> P18;
pl ace bl ock UP_DATA | N OQUT<3> P19;
pl ace bl ock UP_DATA | N OQUT<2> P20;
pl ace bl ock UP_DATA | N OQUT<1> P21;
pl ace bl ock UP_DATA | N OQUT<0> P23;

pl ace bl ock | ORD BAR P24
pl ace bl ock | OAR_BAR P26;
pl ace bl ock AEN_BAR P28;

pl ace bl ock ADDRESS<9> P81,
pl ace bl ock ADDRESS<8> P82;
pl ace bl ock ADDRESS<7> P83;
pl ace bl ock ADDRESS<6> P84;
pl ace bl ock ADDRESS<5> P2;
pl ace bl ock ADDRESS<4> P3;
pl ace bl ock ADDRESS<3> P4;
pl ace bl ock ADDRESS<2> P5;
pl ace bl ock ADDRESS<1> P8;
pl ace bl ock ADDRESS<0> P9;

99

; pl ace
; pl ace
; pl ace
; pl ace

Fol | ow

Last

Last

HHEFHHHH

pl ace i
pl ace i
#

#pl ace
#pl ace
#pl ace
#pl ace
#pl ace
#pl ace
#pl ace
#pl ace
#

pl ace
pl ace
pl ace
pl ace
pl ace
pl ace
pl ace
pl ace
#

pl ace i
#pl ace
#pl ace
#pl ace
#

pl ace i
pl ace i
#pl ace
#pl ace
#

#

pl ace i
pl ace i
#

pl ace i
pl ace i
pl ace i
#

pl ace i
#pl ace
#

pl ace
pl ace
pl ace
pl ace
pl ace
pl ace
pl ace
pl ace
#

pl ace i
pl ace i
#

#pl ace
#pl ace
#pl ace
#

#pl ace
#pl ace

bl ock DONE_PROG BAR P55;
bl ock SERI AL_PROG I N P72
bl ock CLK_IN P74
bl ock RESET P54

ng is the content of file “xc4000.cst” that

Pi n assignments for the XC4000
Mahyar 3/ 25/ 1996
Changed the format on 4/5/1996

Modi fied on 4/12/1996
Modi fied on 5/14/1996

nstance CH P_SELECT BAR : Al
nstance RESET_BIU : A2

instance FI FO DATA | N<7> : L1
instance FI FO DATA | N<6> : L2
instance FI FO DATA | N<5> : K1
instance FI FO DATA | N<4> : K2
instance FI FO DATA | N<3> : K3
instance FI FO DATA | N<2> : J1
instance FI FO DATA | N<1> : J2
instance FI FO DATA | N<O> : J3

nst ance FlI FO_DATA QUT<7> : Gl
nstance FlI FO_DATA _QUT<6> : @&;
nstance FlI FO_DATA QUT<5> : G3
nstance FlI FO _DATA QUT<4> : F1

nst ance FlI FO_DATA QUT<3> : F2
nstance FI FO _DATA QUT<2> : E1

nst ance FlI FO_DATA QUT<1> : E2
nstance FlI FO_DATA_QUT<0> : E3
nstance | NPUT_FI FO_READ BAR : D3
instance | NPUT_FI FO HF_BAR : R11
instance | NPUT_FI FO_ EMPTY_BAR : R10
instance | NPUT_FI FO FULL_BAR : P9
nstance OUTPUT_FI FO WRI TE_BAR : MB;

nstance OUTPUT_FI FO HF_BAR : N15
i nstance OUTPUT_FI FO_ EMPTY_BAR : N14
i nstance OUTPUT_FI FO FULL_BAR : M4

nstance
nstance

BIT_CLOCK_IN : B3;
BYTE_CLOCK_OUT : BI;

ADDRESS<2>
ADDRESS<1>
ADDRESS<0> :

nstance
nstance
nstance

T13
R13
P12;

nstance | ORD BAR : Ni;
instance IOAR BAR : C1

T16
T14
T10
R9
T8;
P7;
T3
P4

nstance
nstance
nstance
nstance
nstance
nstance
nstance
nstance

FI FO_DATA | N_OQUT<7> :
FI FO_DATA | N_OUT<6> :
FI FO_DATA_| N_OUT<5> :
FI FO_DATA | N_OUT<4> :
FI FO_DATA | N_OUT<3> :
FI FO_DATA | N_OUT<2> :
FI FO_DATA_| N_OUT<1> :
FI FO_DATA_| N_OUT<0> :

DATA_READ BAR : TO;
DATA VR TE_BAR : T11;

nstance
nstance

DONE : R15
SERI AL_PROG | N :
CCLK : R2

i nstance
i nstance
i nstance

R14

ML6;
L16;

i nstance
i nstance

Bl U DATA | N<7> :
Bl U_DATA_| N<6> :

100

describes the XC4000 pin assignnments

#pl ace
#pl ace
#pl ace
#Pl ace
#pl ace
#pl ace
#

#pl ace
#pl ace
#pl ace
#pl ace
#pl ace
#Pl ace
#pl ace
#pl ace
#

#pl ace
#pl ace
#pl ace
#pl ace
#pl ace
#pl ace
#pl ace
#pl ace
#pl ace
#Pl ace
#pl ace
#pl ace
#

#pl ace
#pl ace
#

#pl ace
#pl ace
#

nstance
nstance
nstance
nstance
nstance
nstance

nstance
nstance
nstance
nstance
nstance
nstance
nstance
nstance

nstance
nstance
nstance
nstance
nstance
nstance
nstance
nstance
nstance
nstance
nstance
nstance

nstance
nstance

nstance
nstance

Bl U_DATA | N<5> :
Bl U DATA | N<4> :
Bl U_DATA | N<3> :
Bl U_DATA | N<2> :
Bl U_DATA | N<1> :
Bl U_DATA_| N<O> :

EPROM DATA<7> :
EPROM DATA<6> :
EPROM DATA<5> :
EPROM DATA<4> :
EPROM DATA<3> :
EPROM DATA<2> :
EPROM DATA<1> :
EPROM DATA<0> :

EPROM _ADDRESS<11
EPROM_ADDRESS<10
EPROM_ADDRESS<9>

EPROM_ADDRESS<8>
EPROM_ADDRESS<7>
EPROM_ADDRESS<6>
EPROM_ADDRESS<5>
EPROM_ADDRESS<4>
EPROM_ADDRESS<3>
EPROM_ADDRESS<2>
EPROM_ADDRESS<1>
EPROM_ADDRESS<0>

EPROM READ : Al4
EPROM WRI TE : C1

SERI AL_DATA_I N :
SERI AL_DATA_OUT

K16;
J16;
H16;
GL6;
F16;
E16;

C5
c7
B5;
B6;
B7;
A6
A7
A8;

>

> . Cl10

. Cl2
B9;

B10
B11;
B12;
B13
A9

A10;
All;
Al13;

5;

c2;
N2

101

Appendi x D
Schedul e and Data Packet Exanpl es

Abbrevi ations used in the follow ng schedul e tables:

DT = Delta Tine
Tx = Transm t
Rx = Receive

S/IDC = Status or Data or Conmand
Id = BlU or RMWU Id

Schedul e for the ideal test case (Content of “ideal-s.txt” file):

DT TX Rx SSDC Id
10 1 0 1 27
5 0 0 0 27
5 1 0 0 27
1 0 1 1 31
6 1 0 0 1
4 0 1 1 31
6 1 0 0 2
4 0 1 1 31
30 1 0 1 1
1 0 1 1 31
5 1 0 1 2
1 0 1 1 3
19 1 0 1 3
1 0 1 1 4
7 1 0 1 4
1 0 1 1 1
2 1 0 1 1
1 0 1 1 2
5 1 0 1 2
1 0 1 1 3
19 1 0 1 1
1 0 1 1 2
5 1 0 1 3
1 0 1 1 4
15 1 1 1 31

Schedul e for the fail BlIU test case (Content of “fail-biu.txt” file):

DT TX Rx SSDC Id
10 1 0 1 27
5 0 0 0 27
5 1 0 0 27
1 0 1 1 31
4 1 0 0 1
2 0 1 1 31
4 1 0 0 2
2 0 1 1 31
30 1 0 1 1
1 0 1 1 31
5 1 0 1 2
1 0 1 1 3
19 1 0 1 3
1 0 1 1 4
7 1 0 1 4
1 0 1 1 1
2 1 0 1 1
1 0 1 1 2
5 1 0 1 2
1 0 1 1 3
19 1 0 1 1
1 0 1 1 2
5 1 0 1 3
1 0 1 1 4
15 1 1 1 31

102

Appendi x E
VHDL Tool s

Thi s appendi x contains the design flow and procedures necessary to get through the many tools of
VHDL devel opnent environnent. Specifically, the Cadence tool set consisting of “picdesign”
“picxilinx”, “hdl desk”, and “Synergy”

This procedure is put together to help new users to get thru Cadence tools and
to speed up the initial |earning curve

Last Modified on: 11-21-95
Cadence Versi on: 9404

Procedure for using the many files and tools of Cadence devel opnent
environment to synthesize and inplenment a given design in VHDL

run "hdl desk &'
conpi l e all codes using hdl desk
run "SynrgCheck" from the hdl desk
"Synt hesi ze" from hdl desk
select the target library; 3000, 4000, or etc
set synthesis option to cost (a nmust for XC3000)
"yes" for schematic generation, and
sel ect "STD Logi c" option
7. Synergy brings up a pop-up windowtitled "lnmport VHDL"
sel ect "Verilog Model Inport Files" and OK it
Check for warnings and errors in the log files.
8. quit Synergy
9. edit "xnf_out" file and specify the latest run directory used by Synergy,
it is usually in the formof "./yourdesignnane_sonethi ng. syn. r un#"
all that is necessary to do is to change the "#" to reflect the |atest
run directory
10. save the file and quit the editor
11. xnf_out
it will create a "*.xnf" file with the same nane as the desi gn name but
due to some nysterious reasons, in UPPER case. This file |ocated
in the "xilinx" run directory, specified in the "xnf_out" file, MJST
be renaned to | ower case
12. for user pin assignments, edit the file "filenane.cst" that
is located in the "xilinx" run directory.
13. picxilinx &
14. "Setup" will bring up a pop-up window titled "Xilinx"
under "GLOBAL OPTIONS' specify all but
| eave the "Package File" as "default"
under "NETLI ST OPTI ONS" sel ect
I nport Netli st
Generate Constraints File Tenpl ate
under "PHYSI CAL OPTI ONS" sel ect
Verilog Stand Al one
User Pins Only
15. P &R
16. Physi cal
it generates "*.v" and "*.sdf" files
17. generate VHDL shells for the verilog files just created
verilog +vhdl _crshell filenane.v
18. conpile the new VHDL file and nodify the test bench for post-synthesis
simulation, i.e., sinmulation with back-annotation results
19. quit "HDL Desktop"

ogkwNR

103

This procedure is put together to help new users to get thru Cadence tools and
to speed up the initial |earning curve.

Last Modified on: 10- 28- 96

Cadence Versi on: 9502
Mahyar Mal ekpour

Procedure for using the many files and tools of Cadence devel opnent
environment to synthesize and inplenent a given design in VHDL:

1. Change directory to your working directory.
cd YourWrkDirectory

Note: "YourWrkDirectory" is the directory where your VHDL codes are.

2. I nvoke "HDL Desktop" to run Leapfrog and Synergy:
hdl desk &

From wi t hi n hdl desk:
3. Conpi l e all VHDL codes using hdl desk

4. Sel ect the architecture to be synthesized, this will enable the "Synthesize" button

5. Run "SynrgCheck" fromthe hdldesk for a quick synthesizability check, or
run "Synthesize" for a full synthesis of your architecture

Not e: "SynrgCheck” will operate fromwithin hdl desk, while
"Synt hesi ze" will invoke Synergy.

From wi t hin Synergy:
Sel ect the target library; 3000, 4000, or etc.

"

7. Sel ect "Run Synt hesi zer
it will bring up a pop-up wi ndow wi th the caption bar "Run Synthesizer and Optim zer"

7.1. Select Generate Schematic option, if you desire to see the schematic
Note: the "type" should be set to "Conposer"

7.2. Set Constraint Priority to "cost" (a nust for XC3000)
7.3. Set Job Priority to "H ghest" which is nunercial zero
7.4. Select "STD LOGAC', if it is not selected
7.5. "OK" it. The pop-up window wi || disappear and the synthesis will begin
8. MUST wait for the synthesis to finish.
Note: DO NOT hit any key or buttons until the synthesis is finished.

Depending on the size of your design, it will take fromone to a few
m nutes for the Synergy to finish synthesizing your code.

Be patient!
9. To view the synthesis results, fromthe nenu bar, select
Show --> Qutput --> Conposer Schematic
It will bring up two the conposer rel ated w ndows

Not e: The Conposer schematic viewer is VERY PRRMTIVE and with very few functions.
You can zoomin and out, pan left and right, and plot the schematic.
| use it for plotting and visual verification of the synthesis results.

Note: DO NOT attenpt to nodify and save the nodified schenmatic!

10. Quit schematic viewer!

11. Quit Synergy!

From t he Uni x environment:

12. Edit "xnf_out" file and specify the latest run directory used by Synergy,
it isusually in the formof "./YourDesi gnName_Sonet hi ng. syn. run#",
all that is necessary to do is to change the "#" to reflect the |atest
run directory

13. Save the file and quit the editor

104

If you don't have a "xnf_out" file, then create it. Note you only need to create it once.
Here is a sanple of a typical xnf_out file:

xnfout -lib Opt -addio -rundir YourXilinxDirectory -spath
". I Your Desi gnName_Sonet hi ng. syn. run#

/usr/local /cds-9502/ share/library/xilinx/cds /usr/local/cds-9502//tool s/dfll/etc/cdslib"
Your Desi gnNarei nCaps

Legend:

Your Xi | i nxDirectory is the directory where the synthesis results will be.
You need to create this directory once and prior to
runni ng xnf_out conmand.

Your Desi gnNane_Sonet hi ng. syn. run# is the directory where all the tenporary files wll

be.

Synergy creates a new directory after every run.

Your Desi gnNanei nCaps is your design nane, i.e., your design entity nane,

and not necessarily the file name of your design in
caps (UPPER CASE).

Not e: The xnf_out nust be an executable file. Here is the Unix conmand to make
this file executable:
chnod 744 xnf_out
Note that it has to be done only once and after creating the "xnf_out" file.

14. xnf _out
It will create a "*.xnf" file with the same nane as the design nane and place it
in the "YourXilinxDirectory" directory, specified in the "xnf_out" file.

15. View the "xnfout.log" file for possible errors

16. For user pin assignnents,
edit the file "filename.cst" that is located in the "YourXilinxDirectory" directory.
If there is no such file there, then create one.

Note: "*.cst" file format for the Xilinx xc3000 series is as follows:
pl ace bl ock Your_I/O Pin_Nanme P#;

Exanpl e:

pl ace bl ock ADDRESS<7> P2;

Note: "*.cst" file format for the Xilinx xc4000 series is as follows:
pl ace instance Your_|/O Pin_Nanme : #;

Exanpl e:

pl ace i nstance ADDRESS<7> : C5;

Note: For further details please see the Xilinx nanuals.

There are two ways of generating hex files for progranm ng the Xilinx chips:
a. viathe Xilinx front end tool called "picxilinx" or
b. creating a make file and running it at the command |i ne.

Option a, via "picxilinx" and from "YourWrkDirectory":

17. Run Pic-Xilinx program
picxilinx &

17.1. "Setup" will bring up a pop-up window titled "Xilinx"
under "GLOBAL OPTIONS" specify
"Design Nane" to "design-nane",
"Work File" to "./file-name.wk",
"Run Directory" to "YourXilinxDirectory,
"Part Name" to "XC3020PCB84" or "4005APGL56" or other Xilinx parts, and
| eave the "Package File" as "default"
under "NETLI ST OPTI ONS" sel ect
"l mport Netlist"
"Cenerate Constraints File Tenpl ate"
under "PHYS|I CAL OPTI ONS" sel ect
"Verilog Stand Al one"
"User Pins Only"

17.2. Select "P & R'

105

Note: DO NOT hit any key or buttons until it is finished.
ill take fromone to a few

i
Dependi ng on the size of your design, it w
mnutes for the Place & Route to finish.

Be patient!
17.3. Sel ect "Physical"
It generates "*.v" and "*.sdf" files that are used in backannotation
and post-synthesis sinulations.

17.4. Generate VHDL shells for the verilog files just created:
verilog +vhdl _crshell filenane.v

17.5. Conmpile the new VHDL file and nodify the test bench for post-synthesis
simulation, i.e., simulation wth back-annotation results.

17.6. Quit "HDL Desktop"

Option b, via nmake files and fromyour "YourXilinxDirectory" directory:
18. xmake Fil eName. mak

Not e: Depending on the size of your design, it will take fromone to a few
m nutes for the Place and Route to finish.

Be patient!

Note: You need to create a nake file for your design and target chip only
once. This file doesn't need to be nodified there after for that design.

Here is a sanple nake file for programming Xilinx 3000 series:

#
Created by XMAKE Version 5.0.0 on Tue Jan 16 14:48:52 1996

#

The following options were used: -P 3020PC84-100 - X

#

The following is the hierarchy of the design 'FileNane.xnf'
#

DEFAULT_TARGET Fi | eNane. bi t

FileNane.bit : FileNane.lca
makebits -SO -R2 -XB - YA Fil eNane. | ca

Fil eNane.lca : Fil eNane. nap
map2l ca - P 3020PC84-100 Fil eNane. map Fil eNane. | ca
apr -W-Y FileNane.lca FileNane.lca -c FileNane. cst

Fil eNane. map : Fil eNane. xt f
xnfmap - P 3020PC84-100 Fil eNane. xtf Fil eNane. map

Fil eNane. xtf : Fil eNane. xff
xnfprep FileNane.xff FileNane.xtf parttype=3020PC84-100 cstfil e=Fi | eNane. cst

Fil eNane. xff : |d.xnf FileNane.xnf
xnfrmerge -A -D xnf -P 3020PC84-100 Fil eNane. xnf Fil eNane. xff

Here is a sanple make file for programming Xilinx 4000 series:

#
Created by XMAKE Version 5.1.0 on Thu Apr 4 13:55:08 1996

#

The fol |l owing options were used: -P 4005APGL56-5 -X

#

The following is the hierarchy of the design 'FileNane.xnf'
#

DEFAULT_TARGET Fi | eNan®. bi t

FileNane.bit : FileNane.lca
mekebits Fil eNane. | ca

FileNane.lca : FileNane.cst FileNane. xtf

106

ppr FileNanme.xtf -run_pic2map parttype=4005APGL56-5
xdelay -D -WFileNane.|ca

Fi l eNane. xtf : Fil eNane. xff
xnfprep FileNanme. xff FileNanme.xtf parttype=4005APGL56-5 cstfil e=Fi|eNane. cst

Fil eNane. xff : Id.xnf fdp.xnf FileNane.xnf
xnfnmerge -A -D xnf -P 4005APGL56-5 Fil eNane. xnf Fil eNane. xff

To program an FPGA via an EPROM the FPGA bit file needs to be converted
to an EPROM hex file by the followi ng unix comand and from your
"Your Xi | i nxDi rectory" directory:

19. makeprom -f nts -u StartAddress FileNane. bit

Legend:

St art Addr ess is the start address of the EPROM where the hex file wll
be | oaded; typically, 100.

Fi | eNan®e. bi t is the FPGA bit file nane that is in "YourXilinxDirectory"

directory.

107

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) [2. REPORT DATE
April 2002

3. REPORT TYPE AND DATES COVERED

Technical Memorandum

4. TITLE AND SUBTITLE

Fly-By-Light/Power-By-Wire Fault-Tolerant Fiber-Optic Backplane

6. AUTHOR(S)
Mahyar R. Malekpour

5. FUNDING NUMBERS

WU 728-30-10-03

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-2199

8. PERFORMING ORGANIZATION
REPORT NUMBER

L-18158

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/TM-2002-211632

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified—Unlimited
Subject Category 60
Availability: NASA CASI (301) 621-0390

Distribution: Nonstandard

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

multiple prototype boards.

The design and development of a fault-tolerant fiber-optic backplane to demonstrate feasibility of such architecture
is presented. The simulation results of test cases on the backplane in the advent of induced faults are presented, and
the fault recovery capability of the architecture is demonstrated. The architecture was designed, developed, and
implemented using the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL).
The architecture was synthesized and implemented in hardware using Field Programmable Gate Arrays (FPGA) on

14. SUBJECT TERMS]
Fly-By-Light/Power-By-Wire

15. NUMBER OF PAGES
117

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

